加密算法是转换数据的数学函数,通常使用变量或密钥来保护信息。保护这些关键变量对于受保护数据的持续安全至关重要。对于对称加密算法,加密保护信息的发送者和接收者使用相同的密钥。对称密钥必须保密以保持机密性;任何拥有密钥的人都可以恢复未受保护的数据。非对称算法要求发送者使用一个密钥,接收者使用另一个不同但相关的密钥。其中一个非对称密钥(私钥)必须保密,但另一个密钥(公钥)可以公开,而不会降低加密过程的安全性。这些非对称算法通常称为公钥算法。
PQC生成了对量子计算算法(例如Shor's算法)具有抗性的加密算法,并且已经由国家标准技术研究所(NIST)和其他人开发了几年。与公钥加密算法不同,PQC算法不使用整数分解,离散对数或椭圆形曲线离散对数问题,该问题可能会因运行Shor shor算法的量子计算机而破坏。值得注意的是,PQC算法可以在当今的传统计算机而不是量子机上运行。PQC可能是量子抵抗的主要市场解决方案,并且很可能是美国政府的首选解决方案。NIST将于今年最早发布PQC标准的初稿和2024年的标准化版本。
A3 认证算法 GMR2-A3 A5/1 加密算法 GMR2-A5/1 A5/2 加密算法 GMR2-A5/2 A5/X 加密算法 GMR2-A5/0-7 A8 加密密钥生成算法 A8 AB 接入突发 Abis MSC 和 BSC 之间的接口 AC 接入等级(C0 至 C15) 应用上下文 ACC 自动拥塞控制 ACCH 关联控制信道 ACI 相邻信道干扰 ACK 确认/确认 ACM 累计呼叫计数器 地址完整消息 ACR 绝对类别评级 ACS 姿态控制子系统 ACS-CELP 代数共轭结构 码激励线性预测 ACU 天线组合单元 天线控制单元 A/D 模拟到数字 ADC 管理中心模拟到数字转换器 ADCS 姿态确定和控制子系统 ADN 缩位拨号 ADPCM 自适应差分脉冲编码调制 ADPE自动数据处理设备 AE 应用实体 AEC 声学回声控制 AEF 附加基本功能 AEIRP 总有效全向辐射功率 AFC 自动频率控制 AGC 自动增益控制 AGCH 接入授权信道 AI 行动指示器行动项目 AIM 有源互调 AIT 组装、集成和测试
加密算法是转换数据的数学函数,通常使用变量或密钥来保护信息。保护这些密钥变量对于受保护数据的持续安全性至关重要。在对称加密算法的情况下,受加密保护的信息的发送者和接收者使用相同的密钥。对称密钥必须保持秘密以保持机密性;任何拥有密钥的人都可以恢复未受保护的数据。非对称算法要求发送者使用一个密钥,而接收者使用另一个不同但相关的密钥。其中一个非对称密钥(私钥)必须保密,但另一个密钥(公钥)可以公开而不会降低加密过程的安全性。这些非对称算法通常称为公钥算法。
加密算法是数学函数,通常使用称为保护信息的键的变量来转换数据。这些关键变量的保护对于受保护数据的持续安全性至关重要。在对称加密算法的情况下,发起者和受密码受保护信息的接收者都使用了相同的密钥。对称键必须保持秘密才能保持机密性;拥有密钥的任何人都可以恢复未受保护的数据。不对称算法要求发起者使用一个密钥和收件人使用不同但相关的键。必须将这些不对称键之一(私钥)保密,但是可以将另一个密钥(公共密钥)公开而不会降低加密过程的安全性。这些不对称算法通常称为公钥算法。
I。传统的沟通方式保证了对噪声渠道的可靠传输,但无法保证传输信息的无条件安全性。经典加密广泛用于实现信息的安全传输。然而,由于量子计算机的出现,经典加密面临严重的challenges。例如,Shor的算法被证明会破坏激烈的Shamir-Adleman(RSA)和其他不对称的加密算法[1]。同样,Grover的算法能够降低高级加密标准(AES)和其他对称加密算法的安全性[2]。为了应对量子计算引起的安全威胁,研究人员改善了关键分布的方法,例如,使用量化后密码学[3],这依赖于特定的数学问题,这些问题无法通过量子计算机来实现。另一种设计替代方案是量子键
摘要:近年来,神经网络和加密方案既是战争又是和平,这种相互影响形成了值得全面研究的二分法。神经网络可用于对抗密码系统;它们可以在密码分析和对加密算法和加密数据的攻击中发挥作用。这种二分法的这一面可以解释为神经网络宣战。另一方面,神经网络和加密算法可以相互支持。神经网络可以帮助提高密码系统的性能和安全性,加密技术可以支持神经网络的机密性。二分法的后者可以称为和平。据我们所知,目前还没有一项调查全面研究神经网络目前与密码学交互的多种方式。本调查旨在通过概述神经网络和密码系统之间的相互影响状态来填补这一空白。为此,本文将重点介绍目前正在取得进展的领域以及未来研究还有待进一步研究的方面。
密码系统的示例是:DES,3DES,IDEA,RSA,ELGAMAL,PGP等。消息的原始形式称为纯文本,加密形式称为密码文本。加密数据的安全性完全取决于两件事:加密算法的强度和密钥的保密性。加密算法,加上所有可能的密钥以及使其正常工作的所有协议,包括一个加密系统或加密方案。加密是密码系统构建的科学。密码学是密码学和密码分析的科学。密码分析是破坏密码系统的数学技术科学。隐肌是隐藏对象内部信息的科学 /艺术。密码学可以理解为crypt = secret and Graph =写入术语可以理解为stega = hidden and graph = graph =写作示例:在文本文件中隐藏消息。在图像文件中隐藏版权标记。图片中隐藏消息。隐藏图片中的声音。传统上,密码学主要用于军事和外交目的,但是,近年来,加密系统的加密系统的实际和潜在应用已扩展到包括许多其他领域,这些领域在许多其他领域中发挥了至关重要的作用 - 收集并保留机密数据,电子金融交易的记录,等等。一个隐性药物的任务是打破加密,这意味着隐ryptanalyst试图推断密码文本消息的含义,或者确定与加密算法匹配的解密算法。
ryptography是对在恶毒第三方存在下保持沟通秘密和安全性的方法的研究。安全性只能与最弱的链接一样强。在这个密码学世界中,现在已经确立了最薄弱的链接在于加密算法的实施。当今世界的技术进步使加密算法更容易发作。自动机理论是对抽象机和自动机的研究,以及可以使用它们解决的计算问题。这是在离散数学下的理论计算机科学中的理论。因此,自动机理论是对自动操作虚拟机的研究,可以帮助对输入和输出过程的逻辑理解,而无需计算或任何功能或过程的中间阶段或阶段。因此,使用有限状态机可以,可以避免各种攻击的多级密码。在本文中,目的是使用有限状态机器,复发关系和复发矩阵开发新的加密方案。所提出的方法解决了我们现在面临的许多问题,以引入更安全的加密算法。分析了该方法的效率,分析显示了数字信号中的加密保护的改进。Prasanta Kumar Ray与Bhubaneswar国际信息技术学院一起(电话:+91 6746666644;传真:+91 6746636600;电子邮件:prasanta@iiiit-bh.ac.in)。Gopal Krishna Dila与国立技术学院一起,Rourkela- 769008 Odisha(电子邮件:410ma5087@nitrkl.ac.in)。Bijan Kumar Patel与国际信息技术研究所,布巴内斯瓦尔(电子邮件:bijan.bijanpatel.patel@gmail.com)。Bijan Kumar Patel与国际信息技术研究所,布巴内斯瓦尔(电子邮件:bijan.bijanpatel.patel@gmail.com)。
