曲率影响多个长度尺度的物理特性,从形状和尺寸随曲率而急剧变化的宏观尺度,到具有结构、化学、电子和磁性短程有序的材料中的界面和不均匀性的纳米尺度。在关联、纠缠和拓扑占主导地位的量子材料中,曲率开辟了新特性和新现象的道路,这些特性和现象最近出现,可能对未来材料的基础和应用研究产生巨大影响。特别是,具有非共线和拓扑状态的磁性系统和 3D 磁性纳米结构可以从将曲率作为新的设计参数中受益匪浅,以探索在磁场和应力传感、微型机器人以及信息处理和存储中的潜在应用。本文概述了合成、理论和特性研究的最新进展,并讨论了利用曲率实现 3D 纳米磁性的未来方向、挑战和应用潜力。
随着量子计算机的大小和复杂度增加,量子位 (qubit) 表征和门优化成为复杂且耗时的任务。当前的校准技术需要复杂而繁琐的测量来调整量子位和门,无法轻易扩展到大规模量子系统。我们开发了一种简洁的自动校准协议来表征量子位并优化门,使用 QubiC,这是一种基于开源 FPGA(现场可编程门阵列)的超导量子信息处理器控制和测量系统。我们提出了基于多维损失的单量子位门优化和双量子位 CNOT 门校准的全 XY 平面测量方法。我们证明 QubiC 自动校准协议能够在劳伦斯伯克利国家实验室的高级量子测试平台上运行的最先进的 transmon 型处理器上提供高保真门。通过随机基准测试测得的单量子位和双量子位 Clifford 门不保真度为 4。分别为 9(1 . 1) × 10 − 4 和 1 . 4(3) × 10 − 2。
8 东北大学,美国马萨诸塞州波士顿 9 澳门大学科技学院电气与计算机工程系,中国澳门 10 日内瓦大学生物技术校区,瑞士 11 PiPsy 研究所,法国德拉韦伊 12 洛桑联邦理工学院(EPFL)生物工程研究所、神经修复中心;瑞士日内瓦生物技术校区 13 以色列贝尔谢巴本·古里安内盖夫大学健康学院 14 以色列卫生部贝尔谢巴精神卫生中心 15 土耳其伊斯坦布尔生活健康研究与教育中心 16 美国德克萨斯州奥斯汀德克萨斯大学奥斯汀分校机械工程系 17 德国图宾根大学医学心理学与行为神经生物学研究所 18 美国加利福尼亚州洛杉矶加州大学大卫·格芬医学院神经生物学与生物行为精神病学 19 美国马萨诸塞州波士顿波士顿波士顿大学医学院儿科系 20 荷兰马斯特里赫特马斯特里赫特大学认知神经科学系 21 柏林夏洛特医学院神经科学研究中心 (NWFZ) 临床神经技术实验室德国 22 智利天主教大学生物与医学工程研究所,智利圣地亚哥马库尔 23 渥太华大学,美国亚利桑那州苏普赖斯 24 图宾根大学临床心理学系,德国图宾根 25 维也纳大学心理学学院基础心理学研究与研究方法系,奥地利维也纳 26 苏黎世大学精神病医院精神病学、心理治疗与心身医学系,瑞士苏黎世 27 萨尔茨堡大学认知神经科学中心和心理学系,奥地利萨尔茨堡 28 伦敦国王学院精神病学、心理学与神经科学研究所儿童与青少年精神病学系,英国伦敦 29 Laseeb-ISR-IST 里斯本大学,葡萄牙 30 以色列理工学院,以色列海法31 加利福尼亚大学认知科学系,美国加利福尼亚州圣地亚哥 32 曼海姆中央精神卫生研究所心身医学与心理治疗系,曼海姆/海德堡大学医学院,德国 33 莫斯科国立高等经济学院,俄罗斯 34 上海师范大学心理学系,中国上海 35 Bitbrain,西班牙萨拉戈萨 36 SANPSY,USR 3413,波尔多大学,波尔多 CHU de Bordeaux,Place Amelie Raba Leon,法国波尔多 37 明斯特大学精神病学系,德国明斯特 38 田纳西大学心理学系,美国诺克斯维尔 39 Inria Bordeaux Sud-Ouest/LaBRI 波尔多大学 - CNRS-Bordeaux INP,法国波尔多 40 精神病学和神经心理学系,荷兰马斯特里赫特大学健康、医学与生命科学学院心理健康与神经科学学院 41 美国德克萨斯州奥斯汀德克萨斯大学奥斯汀分校心理学系 42 俄罗斯莫斯科国立高等经济学院认知神经科学研究所生物电接口中心 43 数字健康研究所信息与互联网技术系;莫斯科国立谢切诺夫第一医科大学,俄罗斯莫斯科 44 杜克大学神经工程中心,美国北卡罗来纳州达勒姆 45 西部大学精神病学系,加拿大安大略省伦敦 46 维尔茨堡大学心理学系 I,心理干预,行为分析和行为调节, 47 奥尔登堡大学心理学系神经心理学实验室,德国奥尔登堡 48 耶鲁大学放射学和生物医学成像系磁共振研究中心 (MRRC),美国康涅狄格州纽黑文 49 维也纳医科大学儿童和青少年精神病学系,奥地利维也纳 50 JARA 研究所分子神经科学和神经成像 (INM-11),于利希研究中心,德国于利希 51 谢菲尔德大学国际学院心理学系,塞萨洛尼基城市学院,希腊图卢兹让·饶勒斯大学,图卢兹,法国 53 马斯特里赫特大学心理学和神经科学学院,马斯特里赫特,荷兰 54 奥斯陆大学心理学系多模态成像和认知控制实验室,挪威 55 布朗大学阿尔珀特医学院,罗德岛州普罗维登斯,美国 56 埃因霍温理工大学电气工程系,荷兰 57 索拉斯基医学中心沃尔高级成像研究所 Sagol 脑研究所,以色列特拉维夫 58 耶鲁大学医学院放射学和生物医学成像系,美国康涅狄格州纽黑文 59 日内瓦大学医院临床神经科学系神经康复分部,瑞士日内瓦德国 48 耶鲁大学放射学和生物医学成像系磁共振研究中心 (MRRC),美国康涅狄格州纽黑文 49 维也纳医科大学儿童和青少年精神病学系,奥地利维也纳 50 JARA 研究所分子神经科学和神经成像 (INM-11),德国于利希研究中心 51 谢菲尔德大学国际学院心理学系,希腊塞萨洛尼基城市学院 52 CLLE 实验室,法国图卢兹让·饶勒斯大学 CNRS,法国图卢兹 53 马斯特里赫特大学心理学和神经科学学院,荷兰马斯特里赫特 54 挪威奥斯陆大学心理学系多模式成像和认知控制实验室 55 布朗大学阿尔珀特医学院,美国罗德岛州普罗维登斯 56 荷兰埃因霍温理工大学电气工程系57 以色列特拉维夫索拉斯基医学中心沃尔高级成像研究所 Sagol 脑研究所 58 美国康涅狄格州纽黑文耶鲁大学医学院放射学和生物医学成像系 59 瑞士日内瓦日内瓦大学医院临床神经科学系神经康复分部德国 48 耶鲁大学放射学和生物医学成像系磁共振研究中心 (MRRC),美国康涅狄格州纽黑文 49 维也纳医科大学儿童和青少年精神病学系,奥地利维也纳 50 JARA 研究所分子神经科学和神经成像 (INM-11),德国于利希研究中心 51 谢菲尔德大学国际学院心理学系,希腊塞萨洛尼基城市学院 52 CLLE 实验室,法国图卢兹让·饶勒斯大学 CNRS,法国图卢兹 53 马斯特里赫特大学心理学和神经科学学院,荷兰马斯特里赫特 54 挪威奥斯陆大学心理学系多模式成像和认知控制实验室 55 布朗大学阿尔珀特医学院,美国罗德岛州普罗维登斯 56 荷兰埃因霍温理工大学电气工程系57 以色列特拉维夫索拉斯基医学中心沃尔高级成像研究所 Sagol 脑研究所 58 美国康涅狄格州纽黑文耶鲁大学医学院放射学和生物医学成像系 59 瑞士日内瓦大学医院临床神经科学系神经康复分部
台山反中微子观测站(TAO,又称JUNO-TAO)是江门地下中微子观测站(JUNO)的卫星实验。一台吨级液体闪烁体探测器将放置在距离台山核电站核心约 30 米的地方。反应堆反中微子谱将以亚百分能量分辨率进行测量,为未来的反应堆中微子实验提供参考谱,并为测试核数据库提供基准测量。一个装有 2.8 吨钆掺杂液体闪烁体的球形丙烯酸容器将通过 10 m 2 硅光电倍增管 (SiPM) 进行观察,其光子探测效率 > 50%,几乎完全覆盖。光电子产量约为每兆电子伏 4500 个,比任何现有的大型液体闪烁体探测器都要高一个数量级。该探测器在 -50 ◦ C 下运行,以将 SiPM 的暗噪声降低到可接受的水平。该探测器每天将测量约 2000 个反应堆反中微子,并设计为能够很好地屏蔽宇宙背景和环境放射性,使背景信号比约为 10%。该实验预计将于 2022 年开始运行。
利用三维动力学模拟,我们研究了具有预填充圆柱形通道的结构化激光辐照目标所发射的准直伽马射线束。该通道引导入射激光脉冲,从而产生缓慢发展的方位等离子体磁场,该磁场有两个关键功能:增强激光驱动的电子加速和诱导高能电子发射伽马射线。我们的主要发现是,通过利用具有最佳密度的通道,可以在不增加激光强度的情况下显著提高激光能量到伽马射线束 (5 ◦ 开角) 的转换效率。当我们将 P 从 1 PW 增加到 4 PW 时,保持激光峰值强度固定在 5 × 10 22 W/cm 2 ,转换效率随着入射激光功率 P 大致线性增加。这种缩放是通过在通道中使用 10 到 20 n cr 之间的最佳等离子体密度范围来实现的,其中 n cr 是电磁波的经典截止密度。相应的光子数按 P 2 缩放。一个直接受益于这种强缩放的应用是通过双光子碰撞产生对,在固定激光强度下,产生的对的数量按 P 4 增加。
与臭氧剂量的 HfO 2 -Al 2 O 3 /SiGe 双层器件(图 2h)相比,臭氧剂量的 Al 2 O 3 -HfO 2 -Al 2 O 3 /SiGe
• 在与太阳能热板热量收集相关的边界条件下,模拟了现场规模土壤钻孔热能存储系统中的地面温度。 • 使用重构样本校准了考虑增强蒸汽扩散和相变的耦合传热和水流数值模型,并根据加热和环境冷却期间测量的现场温度数据进行了验证。 • 瞬态温度测量和模拟结果表明在包气带非饱和土壤中安装热能存储系统的积极方面。 • 模拟结果表明,热交换器附近的饱和度可能发生了永久性下降。但是,对于本研究考虑的条件,影响区不足以在热交换器之间产生重叠效应。 • 饱和度的降低导致热交换器附近的热导率和体积热容量降低,这可能导致后续热注入事件时出现不同的瞬态响应。