摘要 考虑通过电化学加工 (ECM) 对金属增材制造的 316L 不锈钢进行可加工性研究。这种材料用于汽车、航空航天、珠宝和生物医学行业的原型设计,这些行业需要根据具体情况定制组件。在本研究中,考虑了电压、电解质浓度、占空比和选择四个级别的 L16 正交阵列等 ECM 工艺参数进行优化。采用多标准决策加工方法,即基于熵的多目标优化,基于比率分析法进行性能分析。研究表明,为获得最佳加工性能,建议使用 14 V、35 gl -1 NaNO 3 电解质浓度和 90 % 的占空比。根据主效应表,最佳组合是 16 V、35 gl -1 电解质浓度和 60 % 的占空比。方差分析结果表明,占空比对加工性能的贡献约为27.06 1%,电压对加工性能的贡献约为24.015%,电解质含量对加工性能的贡献约为15.58%。利用扫描电子显微镜对每个微加工孔进行扫描,并拍摄不同分辨率的图像,以分析加工孔的质量。
摘要 陶瓷材料由于其独特的性能,如耐高温、耐腐蚀和机械强度,已被广泛应用于各种工业应用。尽管陶瓷材料具有众多优点,但其在工业应用中的广泛应用仍然存在挑战。生产成本高、原材料有限以及陶瓷材料加工和成型困难是一些关键问题。本系统综述旨在分析陶瓷材料的趋势及其在工业应用中的可行性。为了进行研究,对学术数据库、研究文章和行业报告进行了彻底搜索。搜索条件包括“陶瓷材料”、“工业应用”、“趋势”和“可行性”等关键词。选择了近期发表的相关研究进行分析。提取、合成和分析数据以确定陶瓷材料的趋势及其在不同行业中的潜在应用。研究结果表明,人们对开发具有增强强度、韧性和热稳定性等改进性能的先进陶瓷材料的兴趣日益浓厚。研究人员正在探索新的制造技术,例如增材制造和烧结工艺,以克服传统陶瓷加工方法带来的挑战。根据本系统评价的结果,建议开展更多研究,探索陶瓷材料在可再生能源、生物技术和国防等新兴行业中的潜在应用。行业利益相关者应投资研发,开发具有成本效益和可持续性的工业用陶瓷材料。研究人员、制造商和最终用户之间的合作对于推动创新和促进陶瓷材料在工业应用中的采用至关重要。
乳酸酸已经出现在商业现场,是一种多功能的多羟基酸,在食品,药品,药物,化妆品和化学工业中都有许多合理的应用。这种高增值的生物产品最近作为生物活性化合物越来越受到关注,为合成新型潜在的生物相容性和可生物降解的药物脱脂车提供了出色的化学平台。组织工程和纳米医学的最新进展也强调了该有机酸作为关键生物功能化剂的重要性。因此,乳酸酸的商业相关性不断增长,促使其生物技术生产的新型系统既可持续又有效。本评论探讨了与乳酸生物生产有关的最新进展和研究,无论是通过微生物还是酶促方法,突出了增强生物生产的关键生物处理条件。还列出了当前微生物细胞工厂的详细概述以及乳酸生产的下游加工方法。此外,还讨论了该多羟基酸的潜在前景和当前应用,重点是乳酸离子酸作为新型药物,生物瘤,纳米颗粒和生物聚合物系统开发的关键平台的作用。©2013 Elsevier Inc.保留所有权利。
摘要 要达到设计性能所需的材料需要能够提供金属、陶瓷和金属陶瓷化学成分的配方和加工方法,这些成分必须在源头进行精细调整,并能耐受下游的热机械调整。研究人员不断利用计算热力学模型和改进的热机械处理技术开发结构钢和金属陶瓷,目前正在评估基于 8%–16% wt.% Cr 的氧化物弥散强化钢 (ODS) 还原活化铁素体-马氏体钢 (RAFM)。SiC f 和 CuCrZr 的组合作为含有活性冷却剂的金属基复合材料将被视为一个重大机遇,此外,由 SiC 纤维增强 SiC 基体且能够与金属结构连接的复合陶瓷材料在先进热交换器的开发中具有巨大潜力。继续讨论先进制造的主题,使用粉末冶金热等静压和放电等离子烧结等固态加工技术来生产金属、陶瓷和金属陶瓷的近净成形产品是关键的制造研究主题。增材制造 (AM) 用于生产金属和陶瓷部件现在正成为一种可行的制造途径,通过 AM 和减材加工的结合,可以生产出其他任何工艺都无法制造的高效流体承载结构。将其扩展到使用电子束焊接和先进的热处理来提高同质性和提供模块化,现在可以使用双管齐下的解决方案来提高能力和完整性,同时为设计师提供更大的自由度。
背景:桉树(Melaleuca leucadendra)因其生物活性萜类化合物(包括 1,8-桉油素)而具有抗菌潜力。这种化合物能够抑制大肠杆菌的生长,大肠杆菌是一种导致多种传染病的细菌。利用发酵的生态酶法操作简单,不需要复杂的材料。目的:本研究旨在评估桉树生态酶对大肠杆菌的抗菌活性。材料与方法:本研究中使用的 M. leucadendra 来自印度尼西亚拉蒙岸的 Candisari 村,大肠杆菌来自实验室分离株。通过观察 Muller-Hinton 琼脂上的孔扩散试验中的抑菌圈来测量抗菌活性,以氯霉素为阳性对照,蒸馏水为阴性对照。培养期为24小时,温度为36°C。结果:阳性对照周围的抑菌圈为25.94±1.1mm。在10%至100%浓度范围内,阴性对照和桉树环保酶溶液周围均未观察到抑菌圈(0mm)。但环保酶周围观察到一个更清晰的抑菌圈。环保酶无法抑制大肠杆菌的生长可能与多种因素有关,包括成分、加工方法、酸度和细菌抗性。结论:桉树环保酶在任何测试浓度下对大肠杆菌均未表现出足够的抗菌活性。
对可持续农业实践的需求不断增长,促使人们探索农机中的先进材料,以提高效率、减少环境影响和提高耐用性。本研究对两种有前途的材料进行了比较分析:木质聚合物复合材料 (WPC) 和纤维增强聚合物 (FRP),重点关注它们在农机中的应用。WPC 是木纤维和聚合物树脂的组合,在可再生来源、生物降解性和成本效益方面具有优势。相比之下,FRP 由嵌入聚合物基质中的玻璃、碳或芳族聚酰胺等纤维组成,在恶劣的农业条件下具有出色的强度重量比、耐腐蚀性和耐用性。该研究评估了这两种材料在应用于农机关键部件(包括结构部件、工具、油箱和人体工程学特征)时的机械性能、环境影响、制造工艺和性能。这两种材料都有助于提高可持续性,FRP 在耐用性和抗化学降解性方面优于 WPC,使其更适合在农机中长期应用。然而,对于某些非承重部件来说,WPC 是一种更具成本效益和更环保的替代方案。研究结果表明,在农业机械设计中同时采用 WPC 和 FRP 的混合方法可以为可持续农业的未来提供性能、可持续性和成本效益的最佳平衡。本文主要描述了 WPC 和 FRP 制造的加工方法。
摘要 世界上许多最大的制造企业都严重依赖等离子处理技术。电子行业是这些行业中最重要的,因为基于等离子的技术对于制造超大规模集成微电子电路至关重要。等离子材料处理是生物医学、航空航天、汽车、钢铁、纺织和有毒废物管理领域的一项关键技术。众所周知,等离子处理的表面在微电子等重要工业领域起着主导作用,等离子体用于改性各种材料表面,包括由塑料、聚合物和树脂、纸和纸板、金属、陶瓷、有机和生物材料制成的表面。等离子体也用于工业实验。自 1980 年代初以来,世界各地的实验室在纺织品领域对各种纤维材料的低温等离子体处理进行了大量研究,并在增强等离子处理纺织品的各种功能特性方面取得了非常令人鼓舞的成果。随着人们对环保和节能的关注度不断提高,许多使用大量水、能源和废水的旧式湿化学纺织品加工方法将逐渐被各种低酒精和干整理方法所取代。当等离子技术发展到商业实用的水平时,它有望以极具吸引力的方式实现新颖的纺织能力。本文将重点介绍等离子技术在纺织行业中可能的应用,旨在提供与纺织品整理相关的等离子使用的全面概述和回顾。
无论适用标准有何规定,MIL-S-8879 均适用。 b) 螺纹端部倒角尺寸应符合附录2的规定,尽管附录1中适用标准有规定。 2.4 表面处理 表面处理应按照附录1的适用标准进行。 另外,如果指定QQ-P-416的表面处理,则应使用Type II进行处理,如果指定AMS 2400的表面处理,则应进行铬酸盐处理。 2.5 产品标记 产品标记应符合C&LPS-Y00007中2.4的规定。但如附录1的适用标准对铭牌(材料和油漆)及加工方法有规定,则应适用该规定。 2.6 质量控制 质量控制应符合LPS-A00001补充2第2.6条的规定。 3 质量保证 3.1 初始测试 初始测试应符合C&LPS-Y00007 第3.1条的规定,以及下列规定。然而,如果合同方已经进行了初次试验,则经监理方确认后可以省略C&LPS-Y00007 的3.1.1至3.1.3。 a) 需要初次试验的项目在附录1的备注栏中以“Z”标记表示。 b) 初次检验项目及方法按照附录1中的适用标准执行。 3.2 产品检测 产品检测应按照附录1中的适用标准进行。 3.3 监督检查 监督检查将按照授权支出和责任官员制定的监督检查实施指南进行。 4 运输条件 运输条件应符合C&LPS-A00004第2条的规定。 5 其他说明 其他说明应符合C&LPS-A00001第4条的规定。
摘要:猪皮和鸭皮在中国备受消费者青睐,高温加工方法在烹饪和食品制备中被广泛采用。但高温处理对猪皮和鸭皮中微生物群落的影响尚不清楚。本研究采用模拟烹饪过程的高温处理方法在60 ◦ C至120 ◦ C的温度下处理猪皮和鸭皮样品。研究结果表明,高温处理显著改变了猪皮和鸭皮中的微生物群落。热暴露导致微生物多样性降低并引起特定微生物群落相对丰度的变化。在猪皮中,高温处理导致细菌多样性降低和特定细菌类群的相对丰度下降。同样,鸭皮中微生物群落的相对丰度也降低。此外,猪皮和鸭皮中潜在的致病菌,包括革兰氏阳性菌和革兰氏阴性菌以及需氧菌、厌氧菌和兼性厌氧菌,对高温处理的反应不同。这些发现凸显了高温处理对猪皮和鸭皮中微生物群落组成和结构的重大影响,可能影响食品安全和质量。本研究有助于加深对猪皮和鸭皮高温加工过程中微生物群落变化的微生物机制的理解,对确保食品安全和开发有效的烹饪技术具有重要意义。
摘要:羟基磷灰石(HAP)聚合物复合材料由于其在骨骼再生和牙齿植入物中的应用而受到了极大的关注。本综述研究了HAP的综合,性质和应用,突出了各种制造方法,包括湿,干,水热和溶胶 - 凝胶过程。HAP的特性受到前体材料的影响,通常是从富含钙的蛋壳,贝壳和鱼鳞的天然富含钙来源获得的。复合材料,例如纤维素 - 羟基磷灰石和明胶 - 羟基磷灰石,表现出有望的强度和骨骼和组织替代的生物相容性。金属植入物和脚手架增强了稳定性,包括著名的钛和不锈钢植入物和陶瓷身体植入物。类似壳聚糖和藻酸盐等生物聚合物与HAP结合使用,为组织工程提供了化学稳定性和强度。胶原蛋白,纤维蛋白和明胶在模仿天然骨成分中起着至关重要的作用。各种合成方法,例如溶胶 - 凝胶,水热和溶液铸造产生HAP晶体,并具有潜在的骨修复和再生应用。此外,使用生物塑料材料(例如蛋壳和蜗牛或贝壳)不仅支持可持续的HAP生产,而且还可以减少环境影响。本综述强调了了解脚手架产生钙 - 磷酸化合物(CA-P)化合物的特性和加工方法的重要性,突出了骨愈合中生物材料的新特征和机制。这些方法在特定应用中的比较研究强调了生物医学工程中HAP复合材料的多功能性和潜力。总体而言,HAP复合材料提供了有希望的解决方案,可改善骨骼置换和组织工程的患者结局以及进步的医疗实践。