DNA 中胞嘧啶残基的甲基化会影响染色质结构和基因转录,其调控对大脑发育至关重要。越来越多的证据表明,DNA 甲基化可受激素信号调节。我们分析了变态过程中 Xenopus 蝌蚪大脑中 DNA 甲基化的全基因组变化及其与基因调控的关系,变态是一个依赖甲状腺激素的发育过程。我们研究了蝌蚪大脑中含有控制垂体激素分泌的神经分泌神经元的区域,该区域对甲状腺激素作用高度敏感。使用甲基化 DNA 捕获测序 (MethylCap-seq),我们发现了整个蝌蚪神经细胞基因组中 DNA 甲基化的多样化景观,成对阶段比较确定了数千个差异甲基化区域 (DMR)。在变态前期至变态前期,DMR 的数量最低 (1,163),去甲基化占主导地位。从变态前期到变态高潮期,DMR 几乎翻了一番(2,204),甲基化占主导地位。DNA 甲基化的最大变化出现在变态高潮期到变态完成期(2960 个 DMR),其中 80% 的 DMR 代表去甲基化。使用 RNA 测序,我们发现差异表达基因与位于基因体和转录起始位点上游区域的 DMR 之间存在负相关性。MethylCap-seq 揭示的变态期 DNA 去甲基化通过 DNA 去甲基化中间体 5-羟甲基胞嘧啶和 5-羧甲基胞嘧啶以及催化 DNA 去甲基化的甲基胞嘧啶双加氧酶十十一易位 3 的免疫反应性增加得到证实。我们的研究结果表明,蝌蚪神经细胞的基因组在变态过程中会发生显著的 DNA 甲基化变化,这些变化可能会影响染色质结构和此发育时期发生的基因调控程序。
Kynurenine途径(KP)是大多数哺乳动物生物的色氨酸代谢的主要途径,其下游代谢物积极参与各种生理和病理过程。吲哚胺2,3-二氧酶(IDO)和色氨酸2,3-二加氧酶(TDO)用作KP的初始和关键酶,IDO在心血管疾病中起重要而复杂的角色。已经观察到多种KP代谢物在各种心血管疾病中表现出血浆中的浓度升高,例如动脉粥样硬化,高血压和急性心肌梗塞。多项研究表明,kynurenine(Kyn)可以作为几个不良心血管事件的潜在生物标志物。此外,Kynurenine及其下游代谢产物在炎症中具有复杂的作用,在不同条件下对炎症反应表现出抑制性和刺激作用。在动脉粥样硬化中,IDO的上调刺激了Kyn的产生,介导芳烃受体(AHR)诱导的血管炎性肿瘤的加剧并促进泡沫细胞形成。相反,在动脉钙化中,这种介导减轻了血管平滑肌细胞的成骨分化。此外,在心脏重塑中,Kyn介导的AHR激活加剧了病理左心室肥大和纤维化。针对KP成分的干预措施,例如IDO抑制剂,3-羟基氰基酸和蒽酸,表现出心血管保护作用。本综述概述了KP在冠状动脉粥样硬化,动脉钙化和心肌疾病中的机理作用,突出了KP在心血管疾病中的潜在诊断,预后和治疗价值的潜在诊断,预后和治疗价值,从而为未来研究提供了相关药物的开发和应用的新颖见解。
摘要:表观遗传学在慢性疼痛上的作用尚未充分表征。DNA组蛋白甲基化受到从头甲基转移酶(DNMT1-3)和十种二加氧酶(TET1-3)至关重要的调节。证据表明,与伤害感受相关的不同中枢神经系统区域,即背根神经节,脊髓和不同的大脑区域都改变了甲基化标记。在DRG,前额叶皮层和杏仁核中发现了全局甲基化的降低,这与DNMT1/3A表达降低有关。相比之下,TET1和TET3的甲基化水平和mRNA水平升高与炎性和神经性疼痛模型中的增强性疼痛性超敏反应和异常性有关。由于表观遗传机制可能负责慢性疼痛状态中描述的各种转录修饰的调节和协调,因此,通过这项研究,我们旨在评估几个大脑区域中神经性疼痛中TET1-3和DNMT1/3A基因的功能作用。在神经性疼痛的不幸的神经损伤大鼠模型中,手术后21天,我们发现内侧前额叶皮层中的TET1表达增加,并且在尾甲状腺肿和杏仁核中的表达降低。 TET2在内侧丘脑中被上调。内侧前额叶皮层和尾状甲状腺中的TET3 mRNA水平降低;在尾状药物和内侧丘脑中,DNMT1被下调。使用DNMT3A观察到表达的统计学显着变化。我们的结果表明,在神经性疼痛的背景下,这些基因在不同大脑区域中具有复杂的功能作用。DNA甲基化和羟甲基的概念是细胞类型的特定细胞类型,而不是组织特定的,以及在建立神经性疼痛模型后的时间顺序差异基因表达的可能性。
为了对胎儿产生免疫耐受,母体免疫系统与怀孕前相比会有一些变化。免疫耐受开始并发展于母体胎盘界面。在先天免疫中,蜕膜自然杀伤(dNK)细胞、巨噬细胞和树突状细胞在免疫耐受中起关键作用。在适应性免疫中,调节性T细胞(Treg)数量的适度增加和免疫抑制功能是免疫耐受所必需的。滋养层细胞和表达吲哚胺2,3-双加氧酶(IDO)的免疫细胞、表达HLA-G的滋养层细胞、Th1/Th2向Th2显性转变以及Th17/Treg向Treg显性转变有利于母胎免疫耐受。类固醇(雌激素和孕激素)和人绒毛膜促性腺激素(HCG)也通过诱导Treg细胞或上调免疫抑制细胞因子参与免疫耐受。慢性HBV感染者多数在妊娠前处于“HBV免疫耐受期”,妊娠期间肝脏疾病相对稳定。慢性HBV感染妇女分娩后,体内相对的免疫抑制状态发生逆转,Th1/Th2平衡中Th1占主导,Th17/Treg平衡中Th17占主导。分娩后,外周血中Treg数量减少,NK细胞数量增多且具有细胞毒性,肝脏NK细胞可能通过非抗原特异性机制引起肝脏炎症。分娩后,CD8+T细胞数量会回升,HBV特异性T细胞应答从妊娠期的功能障碍中恢复。在产后炎症的背景下,产后皮质醇的快速下降,特别是HBV DNA和细胞因子诱导的HBV特异性T细胞应答增强,是产后肝炎发生的主要原因。HBeAg阳性,特别是HBeAg<700 S/CO、HBV DNA>3-5Log 10 IU/ml是产后肝炎的危险因素。
在 Xq13 带处发生断裂和重新连接的等着丝粒染色体 idic(X)(q13) 和 X 染色体长臂上的等染色体 i(X)(q10) 是癌症中罕见的细胞遗传学异常 ( 1 , 2 )。“ Mitelman 癌症染色体畸变和基因融合数据库 ”( 1 ) 的最新更新(2024 年 4 月 15 日)包含 47 个携带 idic(X)(q13) 的条目和 55 个携带 i(X)(q10 ) 的条目。idic (X)(q13) 主要见于被诊断为骨髓增生异常综合征 (MDS) 或急性髓细胞白血病 (AML) 的老年女性,在大多数情况下通常是唯一的细胞遗传学畸变 ( 1 , 3 – 8 )。相反,在各种肿瘤,包括 MDS 和 AML ( 1 ) 的复杂核型中,i(X)(q10) 多为继发性畸变。在 AML 和 MDS 的个案中,i(X)(q10) 是唯一的细胞遗传学异常 ( 9 , 10 )。仅在少数 MDS/AML 病例中报道了 Xq13 带中基因组断点的详细描述 ( 5 , 11 , 12 )。还发现患有 idic(X)(q13) 的 MDS/AML 患者的骨髓细胞中携带额外的亚微观遗传畸变 ( 5 , 13 )。尚未报道对 i(X)(q10 ) 病例中可能存在的其他遗传畸变进行调查。i(X)(q10) 的主要后果被认为是 Xp 的丢失和 Xq 上几个基因的获得。此外,其他遗传异常,包括 Tet 甲基胞嘧啶双加氧酶 2 ( TET2 ) 基因的致病变异,已被认为是 idic(X) 阳性髓系恶性肿瘤患者的常见继发事件 ( 5 )。由于携带 idic(X) (q13) 或 i(X)(q10) 的髓系肿瘤罕见,且对其致病机制的了解尚不完全,我们在此介绍了五种髓系肿瘤的分子细胞遗传学和致病变异的特征
摘要吡ido虫5-磷酸(PLP)是维生素B6的生物活性衍生物,在150多个Met-abolic途径中充当辅酶。PLP水平不足可能与糖尿病的发作和进展有关。这项研究旨在评估2型糖尿病患者(T2DM)患者血糖水平的影响。这项介入的,随机的开放标签研究是在梅桑省进行的,来自梅桑糖尿病和内分泌学中心作为研究人群的参与者。这项研究包括新诊断为T2DM的病人。患者被随机分为三组:第1组,对照组,接受非药物治疗(生活方式修饰)治疗(n = 20);第2组除非非药物疗法(生活方式修改),除了二甲双胍500 mg/天治疗(n = 20)。第3组还用二甲双胍500 mg/天加上维生素B6 300 mg/day治疗,除非药物治疗(生活方式修饰)(n = 68)。这些发现表明,用二甲双胍治疗吡啶多毒素辅助治疗对血糖水平和其他研究变量产生了相当有利的影响。与对照组G1的患者相比,在4周治疗后,在G2和G3组中,禁食血浆(FPG)和糖化血红蛋白(HBA1C)的降低具有统计学意义。在禁食血清胰岛素和胰岛素抵抗(HOMA-IR)水平的稳态模型评估中观察到了相似的结果,G2和G3组显着降低(P <0.05)。此外,在4周治疗期结束时,G2和G3组的吲哚胺2,3-二加氧酶水平的降低也明显更高(-14.48%vs -21.16%)(p <0.05)。在二甲双胍治疗中添加吡ido醇辅助治疗可以有效地改善T2DM患者的血糖水平。
胃肠道间质瘤 (GIST) 是软组织肉瘤 (STS) 的一个亚型,已成为致癌成瘾和靶向治疗的概念。这些肿瘤中的绝大多数是在 KIT 或血小板衍生的生长因子受体 a (PDGFR a) 发生突变后发展起来的,导致不受控制的增殖。GIST 对伊马替尼高度敏感。GIST 在滤过性肿瘤中具有免疫力,以肿瘤相关巨噬细胞 (TAM) 和 T 细胞为主,包括许多 CD8+ T 细胞,其数量具有预后意义。基因组表达谱是 Th1 反应受到抑制以及三级淋巴结构和 B 细胞特征的存在,这些已知特征可预测对 ICI 的反应。然而,微肿瘤环境具有免疫抑制特性,具有免疫抑制性 M2 巨噬细胞、吲哚胺 2,3-双加氧酶 (IDO) 或 PD-L1 过度表达以及主要组织相容性复合体 1 型缺失。除了抑制 KIT 致癌基因外,伊马替尼似乎还通过促进细胞毒性 T 细胞活性、与自然杀伤细胞相互作用以及抑制 PD-L1 表达发挥作用。矛盾的是,伊马替尼似乎还会诱导巨噬细胞的 M2 极化。使用抗 CTLA-4 或抗 PD-L1 药物的免疫治疗试验很少,可用的临床数据并不十分乐观。基于对 TME 的全面分析,我们认为在 GIST 中必须强调三种免疫治疗策略。首先,必须根据已识别的驱动突变(如 PDGFR a D842V 突变)、三级淋巴结构 (TLS) 或 PD-L1 表达情况更好地选择临床试验中的患者。此外,创新的免疫治疗药物也引起了 GIST 的极大兴趣,并且在伊马替尼治疗期间疾病进展后探索 IDO 靶向治疗具有很强的理由。最后也是最重要的一点,将 c-kit 抑制与免疫检查点抑制剂相结合具有很强的理由。
特发性肺纤维化(IPF)是一种慢性,进行性和不可逆的间质性肺疾病,预后比肺癌差。这是一种致命的肺部疾病,其病因学和发病机理在很大程度上,没有有效的治疗药物会导致其治疗在很大程度上失败。随着连续的深度研究工作,IPF发病机理中的表观遗传机制得到了进一步发现和关注。作为广泛研究的表观遗传修饰机制,DNA甲基化主要由DNA甲基转移酶(DNMTS)促进,从而导致甲基添加到胞质碱基的五碳位置中,从而导致5-甲基胞糖苷(5-MC)的形成。DNA甲基化的失调与呼吸系统疾病的发展相关。最近,DNA甲基化在IPF发病机理中的作用也受到了相当大的关注。DNA甲基化模式包括甲基化修饰和脱甲基化的修饰,并通过基因表达调节调节一系列必需的生物学功能。通过修饰的基因组基碱基5-MC对5-羟基甲基胞嘧啶(5-HMC)的酶促转化,DNA二加氧酶的十个二十一酶家族对于促进活性DNA去甲基化至关重要。TET2,TET蛋白的成员,参与肺炎症,其蛋白表达在IPF患者的肺和肺泡上皮II型细胞中下调。本综述总结了肺纤维化的病理特征和DNA甲基化机制的当前知识,重点介绍了异常DNA甲基化模式,DNMT和TET蛋白在影响IPF病原体中的关键作用。研究DNA甲基化将基于涉及表观遗传机制的研究提供对IPF病理学的基本机制的理解,并为肺纤维化提供新颖的诊断生物标志物和治疗靶标。
目的:T 细胞在肾脏缺血再灌注损伤 (IRI) 中发挥病理生理作用,核因子红细胞 2 相关因子 2/kelch 样 ECH 相关蛋白 1 (Nrf2/Keap1) 通路调节 T 细胞反应。我们假设成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 介导的 Keap1 敲除 (KO) 增强了 CD4+ T 细胞的 Nrf2 抗氧化潜力,而 Keap1 -KO CD4+ T 细胞免疫疗法可预防肾脏 IRI。结果:CD4+ T 细胞 Keap1-KO 导致 Nrf2 靶基因 NAD(P)H 醌脱氢酶 1、血红素加氧酶 1、谷氨酸-半胱氨酸连接酶催化亚基和谷氨酸-半胱氨酸连接酶修饰亚基显著增加。体外,Keap1-KO 细胞没有显示出衰竭迹象,在常氧条件下白细胞介素 2 (IL2) 和 IL6 水平显著降低,但在缺氧条件下干扰素 γ 水平升高。体内实验中,与接受未编辑对照 CD4+ T 细胞的小鼠相比,IRI 前过继转移 Keap1-KO CD4+ T 细胞可改善 T 细胞缺陷 nu/nu 小鼠的肾功能。与从对照肾脏中分离的未编辑 CD4+ T 细胞相比,IRI 后 24 小时从受体肾脏中分离的 Keap1-KO CD4+ T 细胞活性较低。创新:使用 CRISPR/Cas9 编辑小鼠 T 细胞中的 Nrf2/Keap1 通路是一种创新且有前景的免疫治疗方法,可用于治疗肾脏 IRI 以及其他实体器官 IRI。结论:CRISPR/Cas9 介导的 Keap1 -KO 增加了小鼠 CD4+ T 细胞中 Nrf2 调节的抗氧化基因表达,改变了对体外缺氧和体内肾脏 IRI 的反应。针对 T 细胞中 Nrf2/Keap1 通路的基因编辑是治疗免疫介导肾脏疾病的一种有前景的方法。抗氧化剂。氧化还原信号。38,959–973。
提高作物产量和品质是应对气候变化和人口增长的永恒主题。改良作物品种的关键在于精准操控基因表达。近年来CRISPR/Cas9技术的进步使得基因敲除越来越简单,但对于与重要农艺性状相关的基因,适当调控其表达水平至关重要,完全敲除往往会导致其他方面的缺陷。此外,许多农艺性状的改良需要上调靶基因的表达。因此,开发新的精准上调或下调基因表达的方法,而无需改变基因蛋白序列或引入新的基因组片段,将大大增强作物遗传改良的技术基础。 N 6 -甲基腺苷 (m 6 A) 是真核生物 mRNA 中最丰富且可逆的内部化学修饰,分别由甲基转移酶 (写入酶)、去甲基酶 (擦除酶) 和 m 6 A 结合蛋白 (读取酶) 安装、移除和识别 ( Tang et al., 2023 )。目前,在植物中已鉴定出两种类型的 m 6 A 甲基转移酶:多蛋白复合物和单个蛋白质。该多蛋白复合体包括 MTA、MTB、FIP37、VIRILIZER (VIR)、HAKAI 和 HIZ2(HAKAI 相互作用锌指蛋白 2),可催化 mRNA 中大多数 m6A 修饰(Parker et al., 2021; Ruzicka et al., 2017; Shen et al., 2016; Zhang et al., 2022; Zhong et al., 2008)。单个蛋白质 FIONA1 在拟南芥中也表现出甲基转移酶活性(Wang et al., 2022; Xu et al., 2022),可催化 mRNA 中约 10% 的 m6A 修饰。植物中已鉴定出多种m6A脱甲基酶,它们属于Fe(II)/a-kg依赖性双加氧酶超家族,包括拟南芥AtALKBH10B和AtALKBH9B(Martinez-Perez等,2017)、水稻OsALKBH9(Tang等,2024)和番茄SlALKBH2(Zhou等,2019)。m6A可被m6A结合蛋白识别,如拟南芥中含有YTH结构域的ECT。在植物中,poly A+中m6A/A的比率