Nicole Williams / NYSEG RG&E- NYS清洁热计划David Orellano / Con Edison - CONED CLEAD HEAT计划Jonathan Tham / Pseg-长岛计划Hannah Morgan / Nyserda -P -12计划和Flextech计划Cory Nicosia / Nicosia / Nyserda -Marketing,Res。承包商和培训计划
摘要:锂离子电池(LIB)具有高能量/功率密度,低自我放电速率和较长循环寿命的优势,因此被广泛用于电动汽车(EVS)。但是,在低温下,Libs的峰值功率和可用能量急剧下降,充电期间锂镀层的风险很高。这种不良的性能显着影响电动汽车在寒冷天气中的应用,并极大地限制了高纬度地区的电动汽车的促进。最近这项挑战引起了很多关注,尤其是调查低温下LIB的性能下降并探索解决方案。但是,在此主题上存在有限的评论。在这里,我们彻底回顾了有关电池性能降低,建模和预热的最新技术,旨在推动有效的解决方案来解决LIBS的低温挑战。我们概述了在低温下LIB的性能限制,并量化了在低温下LIB的(DIS)充电性能和电阻的显着变化。考虑到低温影响因素的各种模型也被制表和总结,并改进了描述低温性能的建模。此外,我们对现有的加热方法进行了分类,并强调诸如供暖率,能耗和终生影响等指标,以提供对加热方法的基本见解。最后,概述了当前关于低温LIB的研究的局限性,并提供了未来研究方向的前景。
GTI Energy 与加州大学默塞德分校合作,提升太阳能热传输和存储技术。太阳能热传输和储存技术将两级聚光太阳能集热器与粒子热传输和储存系统相结合,以提供高达 1,112 华氏度 (⁰F)(600 摄氏度 (⁰C))的经济高效、按需高温工业过程热量。目的是在工业现场展示该技术,以减少过程加热燃料的使用和碳足迹。该团队为主站点改造开发了概念系统设计,包括热平衡、工艺流程图和设备位置。加州大学默塞德分校设计并测试了两级收集器和多个连接的四米长接收器,而 GTI 则专注于匹配的 1,202 °F (650 °C) 粒子热传输和储存系统。加州大学默塞德分校的太阳下测试表明,在两级收集器中的吸收器上产生的强烈太阳辐射下,吸收管出现弯曲问题。为解决弯曲问题,开发了一个自洽迭代模型,该模型包含集成的照明、热和变形模块。该模型用于优化吸收管长度,考虑变形、整体集热器效率和安装复杂性,最终得出建议的吸收器长度为 2.7 米。相关的粒子热传输和存储系统经过成功设计、建造和测试,显示出稳定的粒子流速、最小的粒子降解和可接受的压降。该团队与 Stanley Consultants 合作,准备了概念和初步工程包以支持未来的开发和商业化工作。它们包括 2 兆瓦热系统的图表、项目定义、成本估算和市场评估。然而,解决吸收器弯曲问题所花费的时间和精力使团队无法在可用的项目预算和时间表内推进系统的现场演示。
该项目通过跨学科国际合作,利用新型智能材料,尤其是先进吸附剂(如金属有机骨架及其相关复合材料)开发节能供暖、制冷和空气净化策略。该项目计划收集有关用于制冷/除湿、污染物去除、供暖和储能的新型吸附剂材料的现有科学知识和数据。此外,该项目将研究这些材料在空调、空气净化和储热系统中的当前和创新用途。此外,该项目将通过建立不同学科之间的联系来帮助确定和弥合知识差距。在该项目中,来自建筑科学、材料化学、机械工程、材料科学和环境健康领域的专家正在与其他利益相关者合作,利用先进材料加速开发更好、更节能的供暖、制冷和室内空气质量控制系统。
作为其研究文化行动计划的一部分,该大学正在提供计划,以认识到更多员工类别的更广泛的贡献,特别是使用叙事简历和信用分类法的概念。它还扩大了内部研究资金的资格标准,使51名研究人员能够获得中央资金参加会议,培训机会,建立投标或合作伙伴关系,进行参与活动等。在2022 - 23年,并引入了桥梁资金,允许今年合同之间的6名研究人员保持雇用。研究文化种子基金,该基金去年支持12个项目(例如促进AHSS ECRS的机会,促进非洲研究人员之间的合作,倡导开放科学实践),现已嵌入敏捷基金中。
Haagse地理位置B.V. N.V.T.中的海牙4a1 232 31-12-2024 HAAGSE地热B.V. N.V.T.1 221 31-12-2024 Nootdorp-Oost 2在Haagse Geothermolde B.V. N.V.T.中1 224 31-12-2024 Ypenburg 1a在Haagse地理位置B.V. N.V.T.1 229 31-12-2024 *新的预期社会开始的变化允许没有变化。社会的变化以下 - UP不允许不变。名称更改
摘要:本综述的目的是提供洞察力和比较选定的波罗的海国家(丹麦,德国,芬兰,拉脱维亚,立陶宛,波兰和瑞典)的地区供暖(DH)系统的当前状态,尤其是从新颖的智能资产管理(SAM)方法的视图和解决方案。此外,本文考虑了2016年的欧洲项目,涉及波罗的海地区的参与者,涉及DH系统的各个方面。审查特别关注可再生能源(RES),地区供暖子和DH系统的剥削问题,提出了能源。要点是将传统维护系统与SAM解决方案进行比较,用于最佳设计,操作条件和DH网络的控制。关于波罗的海国家DH系统的主要结论是致力于过渡到第四代DH,提高了热供应系统的质量和效率,并同时最大程度地降低了成本。总体趋势表明,应用技术旨在增加可再生能源的份额并减少温室气体排放。此外,本综述中提出的示例强调了实施智能资产管理概念对现代DH系统的重要性。
进入门槛低。虽然经典的基于胶带的剥离方法易于学习,但在扩展方面受到严重限制。[1,2] 理想情况下,不仅应保持起始晶体的高质量,而且其横向尺寸也应反映在剥离产率中。在这里,金介导的剥离开始大放异彩,[3–8] 其中干净光滑的金表面提供了必要的相互作用,以剥离整个层状材料阵列。[4,5] 所得单层区域主要受母晶区域限制,接近 1 的剥离产率,从而允许大规模单层作用。[3,9–11] 这种相互作用本质上是非共价的,并且高度依赖于金表面的状况,即使是轻微的污染也会降低剥离产率。 [5] 最近,界面应变被认为是金介导剥离成功的另一个关键因素,通过破坏层间堆叠促进单层剥离。[12,13] 如前所述,将金的成功剥离扩展到其他贵金属被证明是困难的。[12] 以 MoS 2 为例,按照纯结合能论证,其他几种贵金属应该能够实现类似的性能。然而,金仍然无人能及,与下一个最佳竞争对手银相差两个数量级。[12] 其他金属(如铂、钯和铜)的表现甚至更差。[12] 这些金属性能不佳的原因是缺乏抗氧化性和金属贵重性降低。[12] 然而,银的表现优于铂和钯,使其成为所述趋势的异常值。这一例外是由于晶格失配导致 MoS 2 /Ag 界面处应变过大。不过,较大的应变分散暗示了应变不均匀,这是由于银界面的氧化造成的。很明显,成功的金属介导剥离的两个关键因素是均匀施加在界面上的大界面应变和无氧化物金属表面的清洁度。[5,12] 平衡这两个因素是高单层剥离产量的关键,迄今为止这对银来说很难做到。金通过高抗氧化性和在剥离前精心准备新鲜表面来实现这一点。获得适合此任务的金属表面的一种方法是模板剥离。[14,15] 使用热蒸发在光滑的模板(例如抛光硅晶片)上覆盖一层薄薄的金属层(≈ 200 纳米)。该膜可以通过
从第一部工业革命到目前正在进行的第四次工业革命的人类社会的进步与能源使用和技术状况的变化有关。是引入蒸汽,电力还是生产过程的自动化。所有这些活动都与能源的使用有关,如果我们不计算水力发电,则是从燃烧的木材,煤炭,天然气,油加工或核裂变中获得的。所有提到的商品都代表着一种存储能源的方式,人们根据社会的需求和需求有目的地存储和使用它们。除了核能外,从上述地区获得能源与资源来源的产生(所谓的碳足迹)有关,这被认为是导致气候变化和全球变暖的主要来源。