摘要—基于颅骨变形的无创颅内压 (NIICP) 方法已被证明是评估颅内压 (ICP) 和顺应性的重要工具。本文介绍了一种新型无线传感器的开发和特性,该传感器使用此方法作为其工作原理,设计为易于使用、具有高分辨率和实现良好的可访问性。首先,简要回顾了 ICP 的生理学基础和 NIICP 方法的历史演变。然后介绍了传感器架构和所选组件的原理,旨在确保纳米位移测量、高速将模拟分辨率转换为数字、最少的失真、无线通信和信号校准。NIICP 信号的典型幅度为 5 µ m,因此 NIICP 波形分析需要至少 1% 的该幅度的分辨率。我们还使用纳米位移测试系统展示了传感器的 40 纳米分辨率,该系统还可以动态响应 50 至 180 bpm 的 NIICP 信号,而不会出现任何显著失真(P2/P1 比率的最大偏差为 2.6%)。该设备的未来应用非常广泛,可以增强对颅内动力学的临床评估。
章节页码2.3.2 结构飞行试验27 2.3.2.1 飞行和地面载荷调查27 2.3.2.1.1 讨论27 2.3.2.1.2 要求28. 2.3.2.2 动态响应试验 28 2.3.2.2.1 讨论 28 2.3.2.2.2 要求 29 2.3.2.3 常规飞行试验 29 2.3.2.3.1 讨论 29 2.3.2.3.2 要求 3C 2.3.2.4 飞行颤振试验 30 2.3.2.4.1 讨论 30 2.3.2.4.2 要求 30 2.4 最终结构完整性分析 30 (阶段 IV) 2.4.1 强度总结和操作 31 限制器分析 2.4.1.1 讨论 31 2.4.1.2 要求 31 2.4.2 服务寿命分析 31 2.4.2.1 讨论 31 2.4.2.2 要求 32 2.4.3 参数疲劳分析 32 2.4.3.1 讨论 32 2.4.3.2 要求 32 2.5 实际运行使用(第五阶段) 33 2.5.1 运行载荷记录程序 33 2.5.1.1 讨论 33 2.5.1.1.1 服务载荷 33 记录程序 2.5.1.1.2 寿命史 34 记录程序 34 2.5.1.2 要求 35
摘要 本教程将讨论数据中心/服务器以及 AI 和机器学习系统中使用的 48V 至 0.7V (2,000A) 电源转换器所面临的挑战和解决方案。将讨论和比较两种电源架构。第一种架构是两级架构,其中 48V 转换为 12V(或另一个中间电平),然后将 12V 转换为 0.7V。第二种架构是“单级”,其中 48V“直接”转换为 0.7V。使用“直接”转换架构,无法访问(可见)中间电压总线。在简要介绍广泛应用于数据中心、服务器等的 OAM(OCP 加速器模块)的背景信息和功率要求之后,本教程将提供对降低功率损耗和提高功率密度的技术的新认识。本教程将首先回顾两级架构的最新技术并评估其优点和局限性。然后,本教程将回顾“单级”架构的最新技术并评估其优缺点。基于上述分析和回顾,本教程将提出并讨论 48V 至 0.7V(低至 0.3V)、2,000A(或更高)的应用研究方向,以实现极高的效率、极小的尺寸和电流共享、可扩展、快速动态响应等。
章节页码2.3.2 结构飞行试验27 2.3.2.1 飞行和地面载荷调查27 2.3.2.1.1 讨论27 2.3.2.1.2 要求28. 2.3.2.2 动态响应试验 28 2.3.2.2.1 讨论 28 2.3.2.2.2 要求 29 2.3.2.3 常规飞行试验 29 2.3.2.3.1 讨论 29 2.3.2.3.2 要求 3C 2.3.2.4 飞行颤振试验 30 2.3.2.4.1 讨论 30 2.3.2.4.2 要求 30 2.4 最终结构完整性分析 30 (阶段 IV) 2.4.1 强度总结和操作 31 限制器分析 2.4.1.1 讨论 31 2.4.1.2 要求 31 2.4.2 服务寿命分析 31 2.4.2.1 讨论 31 2.4.2.2 要求 32 2.4.3 参数疲劳分析 32 2.4.3.1 讨论 32 2.4.3.2 要求 32 2.5 实际运行使用(第五阶段) 33 2.5.1 运行载荷记录程序 33 2.5.1.1 讨论 33 2.5.1.1.1 服务载荷 33 记录程序 2.5.1.1.2 寿命史 34 记录程序 34 2.5.1.2 要求 35
章节页码2.3.2 结构飞行试验27 2.3.2.1 飞行和地面载荷调查27 2.3.2.1.1 讨论27 2.3.2.1.2 要求28. 2.3.2.2 动态响应试验 28 2.3.2.2.1 讨论 28 2.3.2.2.2 要求 29 2.3.2.3 常规飞行试验 29 2.3.2.3.1 讨论 29 2.3.2.3.2 要求 3C 2.3.2.4 飞行颤振试验 30 2.3.2.4.1 讨论 30 2.3.2.4.2 要求 30 2.4 最终结构完整性分析 30 (阶段 IV) 2.4.1 强度总结和操作 31 限制器分析 2.4.1.1 讨论 31 2.4.1.2 要求 31 2.4.2 服务寿命分析 31 2.4.2.1 讨论 31 2.4.2.2 要求 32 2.4.3 参数疲劳分析 32 2.4.3.1 讨论 32 2.4.3.2 要求 32 2.5 实际运行使用(第五阶段) 33 2.5.1 运行载荷记录程序 33 2.5.1.1 讨论 33 2.5.1.1.1 服务载荷 33 记录程序 2.5.1.1.2 寿命史 34 记录程序 34 2.5.1.2 要求 35
系统识别方法通过对动态系统的输入和输出进行测量,组成一个数学模型或一系列模型。提取的模型可以表征整个飞机或组件子系统行为(如执行器和机载信号处理算法)的响应。本文讨论了频域系统识别方法在飞机飞行控制系统的开发和集成中的应用。使用频率响应综合识别 (CIFER ® ) 系统识别工具,说明了如何提取和分析从非参数频率响应到传递函数和高阶状态空间表示等不同复杂度的模型。文中展示了艾姆斯研究中心众多飞行和模拟程序的测试数据结果,包括旋翼机、固定翼飞机、先进短距起飞和垂直着陆 (ASTOVL)、垂直/短距起飞和着陆 (V/STOL)、倾转旋翼飞机和风洞中的旋翼实验。对于这一大类系统,实现了出色的系统特性和动态响应预测。示例说明了系统识别技术在提供飞机开发整个生命周期(从初始规格到模拟和台架测试,再到飞行测试优化)的动态响应数据集成流方面的作用。
摘要 近年来,电池/超级电容器 (SC) 混合储能系统 (HESS) 广泛应用于电动汽车 (EV),因为该混合系统结合了两种设备的优点。本文提出了一种电池/SC HESS 的自适应功率分配方案,以根据其存储的能量和负载电流最大化 SC 的利用率。在该方法中,采用自适应算法开发低通滤波器来计算合适的截止频率以在电池和 SC 之间分配功率需求。该方法可以调整截止频率但不改变控制系统的结构,因此不影响其原有的简单实现和稳定性特性。全面的仿真研究验证了所提出的电池/SC HESS 自适应功率分配方案的有效性,并使用 Lyapunov 方法进一步验证了其稳定性。结果表明,自适应方法比传统控制系统在运行期间电池能量吞吐量减少 20%–40% 的性能更好,并且可以根据 SC 的能量容量调整 HESS 的动态响应,进一步提高系统效率。经验证,提出的自适应功率分配方案能够延长电动汽车应用中 HESS 系统的使用寿命。
基于目标的投资(GBI)构成了投资的方法,专注于帮助投资者通过投资组合管理[1]实现其明确定义的短期财务目标。为了表明,长期投资者可能希望在退休时达到目标财富水平。可以简单地将结果目标表示为二进制函数,以指示是否已实现了投资目标。在这种范式下,风险定义为未达到所需目标的概率。这与经典的投资组合优化方法形成鲜明对比,通常基于均值优化[2],其中风险以价格波动为代表,上行价格和下行价格移动等效地处理。鉴于GBI需要动态响应时变特征(例如当前的财富水平和剩余时间),因此可以将其框起来,作为在不在的情况下进行连续决策的问题。因此,可以通过深度加强学习(DRL)技术自然解决。为了确保在现实世界中的高性能下,GBI框架还应考虑另一个动态:金融市场的非平稳性[3],包括突然的政权转换。不明确,在经典投资组合优化中,Legime-
摘要 - 大规模可再生能源整合会降低系统的惯性并限制频率调节。为了使频率稳定性提高,分配适当的频率端口来源对计划者构成了关键的挑战。在此内容中,我们提出了一个频率约束的协调计划模型的热单元,风电场和电池储能系统(BESS),以提供令人满意的频率支持。首先,使用同步发电机和网格连接的逆变器的动态响应来说明了修改的多机频率响应(MSFR)模型,该模型是用预设功率主管构建的。其次,频率变化(ROCOF)和频率响应功率被推论以构建频率约束。基于超平面拟合和数据分类的数据驱动的分段线性化(DDPWL)方法可用于线性化高度非线性频率响应功率。第三,将频率组合插入我们的计划模型中,而基于热力发生混合系统的协调操作的单位承诺。终于将提出的模型应用于IEEE RTS-79测试系统。结果证明了我们共同计划模型保持频率稳定性的有效性。
章节页码2.3.2 结构飞行试验27 2.3.2.1 飞行和地面载荷调查27 2.3.2.1.1 讨论27 2.3.2.1.2 要求28. 2.3.2.2 动态响应试验 28 2.3.2.2.1 讨论 28 2.3.2.2.2 要求 29 2.3.2.3 常规飞行试验 29 2.3.2.3.1 讨论 29 2.3.2.3.2 要求 3C 2.3.2.4 飞行颤振试验 30 2.3.2.4.1 讨论 30 2.3.2.4.2 要求 30 2.4 最终结构完整性分析 30 (阶段 IV) 2.4.1 强度总结和操作 31 限制器分析 2.4.1.1 讨论 31 2.4.1.2 要求 31 2.4.2 服务寿命分析 31 2.4.2.1 讨论 31 2.4.2.2 要求 32 2.4.3 参数疲劳分析 32 2.4.3.1 讨论 32 2.4.3.2 要求 32 2.5 实际运行使用(第五阶段) 33 2.5.1 运行载荷记录程序 33 2.5.1.1 讨论 33 2.5.1.1.1 服务载荷 33 记录程序 2.5.1.1.2 寿命史 34 记录程序 34 2.5.1.2 要求 35