图3:AU@MSIO 2纳米棒上的FDTD模拟。(a)模拟的例证。将带有波形k的p偏振ELD e注射在玻璃盖玻片上的Au@MSIO 2纳米棒上。源角度φ被视为⃗k和ˆ之间的角度。电动ELD在纳米棒的底部进行监测。(b,c)吸收(b)和散射(C)在532 nm处的横截面作为源角度的函数。纳米棒的面向(黑圆圈),如面板(a)或面向s的(绿色三角形)。TIRF的临界角度为61°。(d,e)电气强度| e | 2标准化为事件ELD强度| E 0 | 2在532 nm处,在Au纳米棒的底部监测的源角度为70°。如面板(a)或面向s的(e),纳米棒的定向(d)。
近年来,从分子水平到原子和量子水平的建模兴趣显着增加。计算化学在设计和模拟原子和分子到工业过程的系统的计算模型中起着重要作用。它受到计算能力和算法效率的巨大提高所影响。使用经典自动机理论以热力学术语表示化学反应对计算机科学的影响很大。使用量子计算模型对化学信息处理的研究是一个自然目标。在这项研究中,我们使用双向量子有限的自动机对化学反应进行了建模,这些自动机在线性时间内停止。此外,经典的下降自动机可以为与多个堆栈的这种化学反应设计。已经证明,可以通过结合化学接受/拒绝签名和量子自动机模型来提高计算多功能性。
组装体的组装不仅由光活性分子本身的分子结构决定,还由分子空间排列方式决定。13 – 15具有明确堆积和分子间相互作用的有机超分子晶体是研究超分子组织及其控制和操作的理想体系。16 – 18因此,如何提供具有理想光响应行为的有机超分子晶体引起了化学和材料科学的广泛关注。分子间[2 + 2]光环加成反应,特别是固态的光二聚化,极易受到分子空间排列的影响。预计只有当反应性p-二聚体中的两个单体尽可能平行排列,并且它们的接近度在4.2 ˚A以内时才会发生。19 – 21此类拓扑化学反应具有迷人的能量转移,能够快速有效地将光转化为化学能和动能。 18,22一方面,晶格原子的空间运动会在周围的p-二聚体中产生局部应力,使晶体发生变形。23,24例如,Naumov和Vittal报道了基于[2+2]光环加成反应的智能分子晶体,实现了弯曲、跳跃、滚动、光突显等多种光机械动态行为。25-27另一方面,
为了促进从碳能源依赖型社会向可持续社会的转变,传统的工程策略应进行范式转变,因为它们受到与内在材料特性相关的限制。从理论角度来看,氧析出反应(OER)的自旋相关特性揭示了自旋极化策略在提高电化学(EC)反应性能方面的潜力。手性诱导自旋选择性(CISS)现象因其在实现新突破方面的潜在效用而引起了前所未有的关注。本文从旨在提高自旋相关OER效率的实验结果开始,重点关注基于CISS现象的EC系统。通过各种分析方法验证了自旋极化对EC系统的适用性,以阐明自旋相关反应途径的理论基础和机制。然后将讨论扩展到基于CISS效应的光电化学系统中有效的自旋控制策略。本文探讨了自旋态控制对动力学和热力学方面的影响,还讨论了 CISS 现象引起的自旋极化对自旋相关 OER 的影响。最后,讨论了增强自旋相关氧化还原系统性能的未来方向,包括扩展到各种化学反应和开发具有自旋控制能力的材料。
关键词:定向进化,酶工程我们创建的酶催化了在生物系统中未知的反应。我们通过从现有蛋白质的“混杂”活性开始,指导新酶的演变,从而确定合成化学可能已知的催化活性,但尚未(尚未发现)。我们发现,血红素蛋白是新生物化学的绝妙来源:工程化的细胞色素P450和其他血红素蛋白催化了广泛的合成有用的碳和硝酸盐转移反应,从烷烃环丙烷从SI-C键形成到CH键的SI-C键形成,直达C-H键的氨化。观察大自然的巨大蛋白质目录的成员如何进化(只有几个突变)如何以高效率和选择性催化这些反应,甚至形成生物学中未知的化学键。这些结果表明,进化可以创新并使生活能够应对新的挑战或机遇的轻松。将来这些完全遗传编码的催化剂可能会进入生命未探索的大量化学空间。这些催化剂已经为使用化学计量试剂,罕见的过渡金属催化剂和有机溶剂提供了有效,成本效益,绿色的生物催化替代品,可在生产各种精美的化学品和药物中间体中生产有机溶剂。“用于碳硅键形成的细胞色素C的定向演变:将硅变成生命” S.B.J. Kan,R。D。Lewis,K。Chen,F。H。Arnold。 科学354,1048-1051(2016)。 Forte,D。Rozzell,J。 A. McIntosh,F。H。Arnold。 J.J. Kan,R。D。Lewis,K。Chen,F。H。Arnold。科学354,1048-1051(2016)。Forte,D。Rozzell,J。A. McIntosh,F。H。Arnold。 J.A. McIntosh,F。H。Arnold。J.“高度立体选择性的生物催化合成钥匙环丙烷中间至Ticagrelor” K。E. Hernandez,H。Renata,R。D. Lewis,S。B. J. Kan,C。Zhang,C。Zhang,J。J.ACS催化6,7810-7813(2016)。“酶控制的氮原子转移使C-H氨酸恢复”A. McIntosh,F。H。Arnold。 am。 化学。 Soc。 136,15505-15508(2014)“化学仿生生物催化:利用辅助因子依赖性酶的合成潜力来产生新的催化剂” C。K. Prier,F。H. Arnold。 J. am。 化学。 Soc。 137,13992-14006(2015)A. McIntosh,F。H。Arnold。am。化学。Soc。136,15505-15508(2014)“化学仿生生物催化:利用辅助因子依赖性酶的合成潜力来产生新的催化剂” C。K. Prier,F。H. Arnold。J.am。化学。Soc。137,13992-14006(2015)
化学反应可能以较大的速率发生。虽然化学物质的反应性是化学反应进行速度的重要因素,但可以操纵许多变量以使其加快或减速它们。化学反应也可能是可逆的,因此需要建立不同变量的效果,以确定如何最大化所需产品的产量。了解化学反应伴随的能量变化对于此过程很重要。在工业中,化学家和化学工程师确定了不同变量对产品反应速率和产量的影响。虽然可能会有妥协,但它们进行了优化过程,以确保在足够的时间内和能节能的方式生产出足够的产品。内容概述