背景。要解释星际环境中复杂有机分子 (COM) 的存在,需要彻底了解气相和星际表面相互作用中发生的物理和化学反应。实验和计算机模拟对于建立与这些环境中有机分子形成相关的过程的综合目录至关重要。目的。我们将实验与定制的计算机模拟相结合,首次研究了乙醛 CH 3 CHO(一种重要的冷星际环境中的有机前体)在非晶态固体水中的解吸动力学。我们写这篇论文有两个目标。首先,我们想将这种分子在太空有机分子演化中的作用具体化。其次,我们想提出一个联合方案,基于计算和实验的结合来产生关于解吸量级的定量信息。该方案可用于改进对其他分子的测量。方法。我们利用结合半经验和密度泛函计算的分子动力学模拟,从理论上确定了解吸能和解吸的指数前因子。我们还在无孔非晶态固体水上对乙醛进行了程序升温解吸实验。理论和实验结果的结合使我们能够得出可靠的数量,这些数量对于理解星际冰顶上的星际 COM (iCOM) 的解吸动力学是必需的。结果。发现 CH 3 CHO 从无孔非晶态固体水 (np-ASW) 表面解吸的平均理论和实验解吸能分别为 3624 K 和 3774 K。理论确定的指数前因子为 ν theo = 2。 4 × 10 12 s − 1 ,而通过实验可以将这个量级限制在 10 12 ± 1 s − 1 。结论。将 CH 3 CHO 的解吸能与其他 COM(例如 CH 3 NH 2 或 CH 3 NO)进行比较,可以发现 CH 3 CHO 的挥发性更强。因此,我们认为,考虑到平均结合能,CH 3 CHO 应该在热核的冰升华阶段优先解吸,从而富集该特定组分的气相。此外,整体低结合能表明由于非热效应(即反应性解吸或宇宙射线诱导的解吸),恒星前核可能提前返回气相。这可以解释 CH 3 CHO 在恒星前核气相中的普遍存在。需要专门的实验室和理论努力来证实最后一点。
spocety:+352 6 91 18 88 29巴黎,法国/卢森堡/北京中国,2020年11月6日 - 推力和空位宣布,Beihangkhongshi-1卫星卫星,在3月6日,在3月6日的iodine电力系统中,始于世界上的第一个iodine Electric Propuls System,在3月6日的Space上发射了6季。上午11:20(北京时间)。空间推进正在成为一个关键的子系统,尤其是对于卫星星座,高性能,交钥匙和简化的解决方案对于确保空间行业的经济和环境可持续性很重要。使用不是单独运行的小卫星的使用,而是作为星座的一部分,改变了行业设计,制造,发射和操作卫星的方式。到目前为止,这些卫星可用的推进系统过于复杂,太昂贵,或者性能不足以提供完整的星座部署能力,并且需要新的创新推进解决方案。Beihangkongshi-1卫星包括使用碘推进剂的推力NPT30-I2电推进系统。碘可以作为固体存储,不需要任何复杂或昂贵的高压储罐,例如传统的气态推进剂,例如氙气。这也意味着可以预先填充推进系统,这极大地简化了卫星集成和测试。考虑了氙气的高生产成本,以及预测的供应问题以满足卫星星座的不断增长的需求,碘被视为重要的下一代推进剂,以实现太空行业的可持续性。“ iodine是一个改变游戏规则的人,通过此任务,我们将首次演示它。”“去年,我们在Spocety的Xiaoxiang 1(08)卫星上测试了碘储存,输送和升华的关键技术,作为我们I2T5碘冷气推力推力的轨道表现的一部分。这次,我们将测试NPT30-I2电动推进系统的全部功能,并进行许多先进的轨道操作。”在Spacety的Beihangkongshi-1卫星上展示了Throustme的NPT30-I2,这将导致两家公司之间的重要商业合作。“我们认为Throustme的NPT30-I2碘电推进是满足我们SAR星座的推进要求的非常有前途的技术。我们已经订购了Throustme的几个NPT30-I2推进系统,用于即将到来的合成孔径雷达星座,我们将于今年开始部署。” Feng Yang的创始人兼首席执行官说。合成孔径雷达(SAR)使用特殊的雷达天线来创建景观或城市的2D或3D重建;白天和黑夜,雨天还是闪耀。通过使用星座,可以通过快速刷新速率获得全球覆盖范围,非常适合遥感和映射,尤其是灾难管理。由于小卫星星座通常是
自从石墨烯 (tBLG) 被发现以来,各种新奇的物理现象被揭示出来,例如独特的电子特性。 [3] 特别是,根据扭曲角度 (θ),具有低θ(1.1至5°)的tBLG表现出不同的物理特性,例如莫特绝缘,超导和异常导电行为,这些特性引起了更多的关注。 [4] 此外,tBLG还被发现在电化学,手性和慢等离子体中发挥着重要作用。 [5] tBLG已成为探索物理性质和寻找新应用的有力模型。 因此,可控制备θ范围为0至30°的高质量tBLG是一项艰巨的挑战。 目前,tBLG的制备主要依赖于人工堆叠的方法,例如堆叠单层石墨烯和折叠单层石墨烯。 [6] 但多次转移过程形成的污染和褶皱不可避免地影响tBLG的耦合质量,降低其固有的物理性能。此外,在超高真空条件下,通过热Si升华在氢刻蚀的6H-SiC(000-1)衬底上制备了tBLG。[7] 但这种方法成本不高,并且需要复杂的石墨烯转移程序。化学气相沉积(CVD)被认为是一种制备高质量石墨烯的简便、可扩展的方法[8],其中Cu和Ni被广泛用作直接生长石墨烯的基底。然而,由于Cu中碳含量低,除非采用复杂的工艺,否则很难以Cu为催化剂制备多层石墨烯。[9] 此外,虽然已经利用Cu-Ni合金作为基底来控制石墨烯层的生长,但是很难打破AB堆叠石墨烯的对称性来形成扭曲石墨烯。[10] 最近,Sun等人[11] 在石墨烯层转移过程中,引入了碳和碳键,从而实现了石墨烯的转移。报道了一种在低压 CVD 系统下引入气流扰动的异位成核策略,用于在 Cu 箔上生长石墨烯畴。[11] 因此,迫切需要找到一种简单的方法来制备具有大扭曲角度范围窗口的高质量石墨烯畴,这对于探索石墨烯畴的独特性能非常关键和必要。在本文中,我们开发了一种在环境压力下在液态 Cu 基底上制备石墨烯畴的简便方法。在高于固态 Cu 熔点(1083 ° C)的生长温度下,在液态 Cu 表面生长的石墨烯畴保持对齐取向。通过调节生长温度,对齐状态被打破,在液态 Cu 上生长的石墨烯畴在表面下移动和旋转
铝 Al 13 26.98 2.71 FCC 0.143 0.053 3 � 660.4 氩 Ar 18 39.95 — — — — 惰性 � 189.2 钡 Ba 56 137.33 3.5 BCC 0.217 0.136 2 � 725 铍 Be 4 9.012 1.85 HCP 0.114 0.035 2 � 1278 硼 B 5 10.81 2.34 菱面体。— 0.023 3 � 2300 溴 Br 35 79.90 — — — 0.196 1 � � 7.2 镉 Cd 48 112.41 8.65 HCP 0.149 0.095 2 � 321 钙 Ca 20 40.08 1.55 FCC 0.197 0.100 2 � 839 碳 C 6 12.011 2.25 Hex.0.071 � 0.016 4 �(3367 升华) 铯 Cs 55 132.91 1.87 BCC 0.265 0.170 1 � 28.4 氯 Cl 17 35.45 — — — 0.181 1 � � 101 铬 Cr 24 52.00 7.19 BCC 0.125 0.063 3 � 1875 钴 Co 27 58.93 8.9 HCP 0.125 0.072 2 � 1495 铜 Cu 29 63.55 8.94 FCC 0.128 0.096 1 � 1085 氟 F 9 19.00 — — — 0.133 1 � � 220 镓 Ga 31 69.72 5.90 正交。0.122 0.062 3 � 29.8 锗 Ge 32 72.64 5.32 直径。立方体 0.122 0.053 4 � 937 金 Au 79 196.97 19.32 FCC 0.144 0.137 1 � 1064 氦 He 2 4.003 — — — — 惰性 � 272(26 个大气压) 氢 H 1 1.008 — — — 0.154 1 � � 259 碘 I 53 126.91 4.93 正交。0.136 0.220 1 � 114 铁 Fe 26 55.85 7.87 BCC 0.124 0.077 2 � 1538 铅 Pb 82 207.2 11.35 FCC 0.175 0.120 2 � 327 锂 Li 3 6.94 0.534 BCC 0.152 0.068 1 � 181 镁 Mg 12 24.31 1.74 HCP 0.160 0.072 2 � 649 锰 Mn 25 54.94 7.44 立方 0.112 0.067 2 � 1244 汞 Hg 80 200.59 — — — 0.110 2 � � 38.8 钼 Mo 42 95.94 10.22 BCC 0.136 0.070 4 � 2617 氖 Ne 10 20.18 — — — — 惰性 � 248.7 镍 Ni 28 58.69 8.90 FCC 0.125 0.069 2 � 1455 铌 Nb 41 92.91 8.57 BCC 0.143 0.069 5 � 2468 氮 N 7 14.007 — — — 0.01–0.02 5 � 209.9 氧 O 8 16.00 — — — 0.140 2�218.4磷 P 15 30.97 1.82 邻位。0.109 0.035 5 � 44.1 铂 Pt 78 195.08 21.45 FCC 0.139 0.080 2 � 1772 钾 K 19 39.10 0.862 BCC 0.231 0.138 1 � 63 硅 Si 14 28.09 2.33 直径立方体 0.118 0.040 4 � 1410 银 Ag 47 107.87 10.49 FCC 0.144 0.126 1 � 962 钠 Na 11 22.99 0.971 BCC 0.186 0.102 1 � 98 硫 S 16 32.06 2.07 正交。0.106 0.184 2 � 113 锡 Sn 50 118.71 7.27 四方。0.151 0.071 4 � 232 钛 Ti 22 47.87 4.51 HCP 0.145 0.068 4 � 1668 钨 W 74 183.84 19.3 BCC 0.137 0.070 4 � 3410 钒 V 23 50.94 6.1 BCC 0.132 0.059 5 � 1890 锌 Zn 30 65.41 7.13 HCP 0.133 0.074 2 � 420
铝 Al 13 26.98 2.71 FCC 0.143 0.053 3 660.4 氩 Ar 18 39.95 — — — — 惰性 189.2 钡 Ba 56 137.33 3.5 BCC 0.217 0.136 2 725 铍 Be 4 9.012 1.85 HCP 0.114 0.035 2 1278 硼 B 5 10.81 2.34 菱面体— 0.023 3 2300 溴 Br 35 79.90 — — — 0.196 1 7.2 镉 Cd 48 112.41 8.65 HCP 0.149 0.095 2 321 钙 Ca 20 40.08 1.55 FCC 0.197 0.100 2 839 碳 C 6 12.011 2.25 Hex. 0.071 0.016 4 (3367 升华) 铯 Cs 55 132.91 1.87 BCC 0.265 0.170 1 28.4 氯 Cl 17 35.45 — — — 0.181 1 101 铬 Cr 24 52.00 7.19 BCC 0.125 0.063 3 1875 钴 Co 27 58.93 8.9 HCP 0.125 0.072 2 1495 铜 Cu 29 63.55 8.94 FCC 0.128 0.096 1 1085 氟 F 9 19.00 — — — 0.133 1 220 镓 Ga 31 69.72 5.90 正交 0.122 0.062 3 29.8 锗 Ge 32 72.64 5.32 直径立方体 0.122 0.053 4 937 金 Au 79 196.97 19.32 FCC 0.144 0.137 1 1064 氦 He 2 4.003 — — — — 惰性 272 (26 个大气压) 氢 H 1 1.008 — — — 0.154 1 259 碘 I 53 126.91 4.93 正交0.136 0.220 1 114 铁 Fe 26 55.85 7.87 BCC 0.124 0.077 2 1538 铅 Pb 82 207.2 11.35 FCC 0.175 0.120 2 327 锂 Li 3 6.94 0.534 BCC 0.152 0.068 1 181 镁 Mg 12 24.31 1.74 HCP 0.160 0.072 2 649 锰 Mn 25 54.94 7.44 立方 0.112 0.067 2 1244 汞 Hg 80 200.59 — — — 0.110 2 38.8 钼Mo 42 95.94 10.22 BCC 0.136 0.070 4 2617 Neon Ne 10 20.18 — — — — 惰性 248.7 镍 Ni 28 58.69 8.90 FCC 0.125 0.069 2 1455 铌 Nb 41 92.91 8.57 BCC 0.143 0.069 5 2468 氮 N 7 14.007 — — — 0.01–0.02 5 209.9 氧 O 8 16.00 — — — 0.140 2 218.4 磷 P 15 30.97 1.82 0.109 0.035 5 44.1 铂 Pt 78 195.08 21.45 FCC 0.139 0.080 2 1772 钾 K 19 39.10 0.862 BCC 0.231 0.138 1 63 硅 Si 14 28.09 2.33 直径立方体 0.118 0.040 4 1410 银 Ag 47 107.87 10.49 FCC 0.144 0.126 1 962 钠 Na 11 22.99 0.971 BCC 0.186 0.102 1 98 硫 S 16 32.06 2.07 正交0.106 0.184 2 113 锡Sn 50 118.71 7.27 四。 0.151 0.071 4 232 钛 Ti 22 47.87 4.51 HCP 0.145 0.068 4 1668 钨 W 74 183.84 19.3 BCC 0.137 0.070 4 3410 钒 V 23 50.94 6.1 BCC 0.132 0.059 5 1890 锌 Zn 30 65.41 7.13 HCP 0.133 0.074 2 420 锆 Zr 40 91.22 6.51 HCP 0.159 0.079 4 1852
关岛权力管理局(GPA)是关岛政府的公共事业和自治机构。GPA产生,分发和出售零售电力,但一直在远离拥有一代,而是选择与独立的电力生产商合同以操作和维护新的化石燃料和可再生能源电厂的设施。GPA为近58,000名客户提供服务,美国海军是最大的单一客户,占关岛能源负载的20%,这一数字正在迅速增长。关岛的电力成本几乎是美国全国平均水平的两倍,尽管比太平洋的其他岛屿要低一些。2022年的平均零售电力成本接近0.35美元/千瓦时,其中包括燃料附加费,可以根据市场燃料价格每六个月进行一次调整。