介绍了在惰性气氛下通过扫描隧道显微镜 (STM) 沉积和成像分子的方法和装置。评估了三种应用分子的方法:气相平衡吸附、升华和电喷涂。利用这些方法,各种有机和生物聚合物分子可以在石墨和在云母上外延生长的金 (111) 上沉积和成像。与使用高真空设备或手套箱等替代方案相比,这些程序具有一些重要优势:它们便宜、方便、更快速。当将巯基乙醇、乙醇胺、乙醇、乙酸和水以蒸汽形式引入扫描室时,它们会在金基底上产生二维晶体吸附层。据推测,这些吸附层涉及分子与表面形成的金氧化物之间的氢键合。将蛋白质溶液电喷雾到金表面可获得单个蛋白质分子的图像,其横向尺寸接近 X 射线分析测量的尺寸,厚度为 0.6-1.3 纳米。对于金属硫蛋白,可以重现观察到已知的分子内部结构域。在所检查的其他示例中,无法解析详细的内部结构。
WC-Co 金属陶瓷,也称为硬质合金,是摩擦学应用中最广泛使用的硬质材料。W 和 Co 价格的不断上涨以及经济方面的不利因素提醒人们 WC 和 Co 需要被取代。WO 3 是一种有毒物质,在碳化钨应用过程中在空气中形成,在 750°C 以上升华,在室温下可溶于水。Co 的取代还受到其活性氧化物 Co 3 O 4 的潜在致癌性质的驱动。铌是一种与钨类似的难熔金属,可以部分甚至完全取代硬质合金中的钨。NbC 是一种熔点为 3522°C 的难熔碳化物,它具有热稳定性,在 Fe、Ni 和 Co 中的溶解度非常低。此外,相关氧化物 Nb 2 O 5 具有热力学稳定性,熔点为 1512°C。由于 Co 和 NbC 的润湿性相对较差,在 WC-Co 中用 NbC 替代 WC 必然需要同时替换 Co 粘合剂。NbC-Ni 和 NbC-Fe 或 NbC-Mo 基材料将成为 WC-Co 材料的“非关键且无害”替代品。
姜黄素 (CCMoids) 是一种高效的分子平台,合成过程相对简单,可根据最终用途容纳各种功能单元。尽管 CCMoids 主要用于生物医学应用,但人们对其在纳米科学和纳米技术的其他领域的应用越来越感兴趣。我的团队的工作重点是创造具有发光、配位和/或电子特性的新型 CCMoids,特别关注控制它们在表面和/或设备上的沉积,以便随后应用。因此,CCMoids 的合成使我们将其用作连接体并获得高维材料(1D-3D),并创建纳米线系统,我们的分子允许电子在石墨烯基设备中通过。对于它们的纳米结构,我们探索了不同的溶解、软沉积或升华技术,从而获得与不同基质共价或超分子结合的 CCMoids。这导致了功能化表面、薄膜、晶体和聚集体的产生,除此以外,我们还构建了 BF3 传感表面以及用于电气特性的混合 FET 型设备。本次演讲旨在总结我们与这些主题相关的最新成果并提供未来展望。
介绍了在惰性气氛下通过扫描隧道显微镜 (STM) 沉积和成像分子的方法和装置。评估了三种应用分子的方法:气相平衡吸附、升华和电喷涂。利用这些方法,各种有机和生物聚合物分子可以沉积在石墨和在云母上外延生长的金 (111) 上并成像。与使用高真空设备或手套箱等替代方案相比,这些程序具有一些重要优势:它们便宜、方便、更快捷。当将巯基乙醇、乙醇胺、乙醇、乙酸和水以蒸汽形式引入扫描室时,它们会在金基底上产生二维晶体吸附层。据推测,这些吸附层涉及分子与表面形成的金氧化物之间的氢键合。将蛋白质溶液电喷雾到金表面可获得单个蛋白质分子的图像,其横向尺寸接近 X 射线分析测量的尺寸,厚度为 0.6-1.3 纳米。对于金属硫蛋白,可以重现观察到已知的分子内部结构域。在所检查的其他示例中,无法解析详细的内部结构。
“ S&P500®指数”,“标准普尔500平均每日风险控制10%的价格回报指数”和“标准&P美国退休人员支出指数”是S&P Dow Jones Indices LLC或其关联公司(其“ SPDJI”)的产品,并已通过大众使用大众使用的使用寿命升华保险公司使用。s&p®,S&P500®,S&P 500平均每日风险控制10%™,SPDR®,US 500,500,IBOXX®,ITRAXX®,ITRAXX®和CDX®是S&P Global,Inc。的商标或其分支机构的商标(“ S&P”); DowJones®是Dow Jones商标Holdings LLC(“ Dow Jones”)的注册商标; Spdji,Dow Jones,S&P,S&P,他们各自的关联公司都没有赞助,认可,出售或促进大规模上升的人寿保险公司的产品,并且这些各方都没有对投资此类产品的适用性表示任何代表性的代表,他们对每日误差,不断损失的责任,SUMSS&P 500; S&P 500 ^ s&p 500 ^ s&p 500 recker的责任,标普美国退休人员支出指数。
为了生产二维材料的纳米结构,通常使用自上而下的技术,例如光刻[6]、电子束光刻(EBL)[7]和离子束光刻[8]。最近观察到,使用电子或离子的光刻技术可能会导致二维材料的结构损伤[9]或增加抗蚀剂污染,而这些污染需要通过等离子清洗去除。[10]激光烧蚀是一种无抗蚀剂的一步式替代方法[11–13],但光学衍射极限阻碍了其在需要亚微米分辨率的场合使用。自下而上的技术,例如化学气相沉积和位置选择性生长[14,15],可实现可扩展性和高分辨率。然而,复杂器件结构的可重复制造和器件集成仍未解决。扫描探针光刻(SPL)包含一组纳米光刻技术,可实现需要超高分辨率的独特应用。 [16] SPL 的工作原理基于纳米探针和表面之间的各种物理和化学相互作用,并且已应用于 2D 材料的机械划痕、[17] 局部氧化、[18,19] 和浸笔工艺。[5] 具体来说,热扫描探针光刻 (t-SPL) 是一种新兴的直写方法,它使用加热的纳米尖端进行 2D 和 3D 减材/增材制造。[20–22] t-SPL 的图案创建是通过使用加热的纳米尖端连续压痕样品同时扫描样品来完成的。除了超快写入之外,还可以用冷尖端对样品进行成像,类似于传统的原子力显微镜 (AFM),从而实现闭环光刻和图案叠加。在这里,我们表明,通常应用于可升华聚合物的热机械压痕技术也允许直接切割 2D 材料。为此,我们在环境压力和温度下使用 t-SPL,通过加热的纳米尖端局部热机械切割 2D 材料的化学键。展示了单层 MoTe 2 的 20 纳米分辨率图案,以及它对其他 2D 材料(如 MoS 2 和 MoSe 2)的适用性。相对于 EBL,所提出的技术不需要高真空并可避免电子诱导损伤,因此可以非常经济高效的方式轻松实施,以制作高质量 2D 纳米结构的原型和制造。对于大多数应用,2D 材料的功能性纳米结构必须通过光刻技术进行图案化。在这里,我们开发了一种用于单层 2D 材料的一步光刻技术,也称为直接纳米切割,使用热机械压痕法,如图 1 a 所示。为此,我们将 2D 材料薄片直接转移到 50 纳米厚的可升华聚合物层上,该层由旋涂机制成,然后通过热机械压痕法进行图案化。
15 年来,美国一直没有生产 TATB。TATB 以前采用 Benziger 开发的合成方法生产(图 5)19), 20)。相对昂贵且国内无法获得的 1,3,5-三氯苯 (TCB) 经硝化得到 2,4,6-三氯-1,3,5-三硝基苯 (TCTNB),然后将其胺化得到 TATB。这两个反应都需要高温(150 o C)。该过程中遇到的主要杂质是氯化铵。在胺化步骤中加入 2.5% 的水会显著降低 TATB 中的氯化铵含量。还发现了低水平的氯化有机杂质。这些杂质包括 2,4,6-三氯-1,3,5-三硝基苯 (TCTNB)、1,3-二硝基-2,4,5,6-四氯苯、1,3-二硝基-2,4,6-三氯苯及其部分胺化产物 21)。值得注意的是,与其他高爆炸药 (RDX、HMX、TNT、HNS) 不同,TATB 不能使用常规技术纯化。TATB 的溶解度和挥发性极低,无法在大规模生产中使用重结晶和升华工艺。超过氯化铵和/或其他杂质允许限度的 TATB 生产批次必须丢弃。这显然在经济和环境方面都是不可取的。
石墨烯是第一种真正的二维材料,[1] 是形成简单六边形晶格的单层碳。剥离的石墨烯薄片表现出了高迁移率和异常量子霍尔效应 (QHE) 等显著的电学特性,引起了人们对其在许多实际应用中的极大兴趣。[2–5] 然而,由于剥离的石墨烯薄片的尺寸限制(通常高达几十微米),石墨的机械剥离无法提供适用于商业晶圆尺寸电子器件或精确电阻计量的石墨烯。当 SiC 衬底在超高真空或惰性气体氛围中以高于 1000°C 的温度退火时,Si 升华后碳会残留在 SiC 表面并重新排列形成石墨烯层。这种外延石墨烯 (EG) 已准备好用于大规模器件制造,无需转移到另一个绝缘基板上。在六边形 SiC 晶片的硅端面 (Si 面) 上生长的石墨烯由于与 SiC 晶体的方位角取向一致,可以形成大域。与在相反 (碳) 面上生长的石墨烯相比,在 Si 面上,EG 还具有更可控的生长动力学。最近,通过优化
空间电力推进 (EP) 技术的推力致密化对于实现未来雄心勃勃的太空任务和探索(例如载人火星任务)必不可少。EP 致密化主要受限于推进器材料承受极端等离子体条件的能力。本研究调查了最大化电流增强的相互关联的动力学、随后的溅射和电弧腐蚀挑战,以及一类有前途的新型先进材料——体积复合材料 (VCM) 对空间电力推进系统的影响。与标准材料相比,VCM 表现出增强的管理高水平等离子体能量和电流的能力,这主要归功于几何捕获和等离子体注入等原理的综合优势。研究了 VCM 中的能量管理和溅射剂传输机制,以深入了解最佳 VCM 几何形状,并探索利用先进增材制造方法的潜力。还通过耦合计算和实验分析确定了 VCM 电弧响应和有利的升华腐蚀特性。这一发现强调了 VCM 具有彻底改变与 EP 相关的面向等离子体应用的材料设计的潜力,为更耐用、更高效的推进系统铺平了道路。
石墨烯是第一种真正的二维材料,[1] 是形成简单六边形晶格的单层碳。剥离的石墨烯薄片表现出了高迁移率和异常量子霍尔效应 (QHE) 等显著的电学特性,引起了人们对其在许多实际应用中的极大兴趣。[2–5] 然而,由于剥离的石墨烯薄片的尺寸限制(通常高达几十微米),石墨的机械剥离无法提供适用于商业晶圆尺寸电子器件或精确电阻计量的石墨烯。当 SiC 衬底在超高真空或惰性气体氛围中以高于 1000°C 的温度退火时,Si 升华后碳会残留在 SiC 表面并重新排列形成石墨烯层。这种外延石墨烯 (EG) 已准备好用于大规模器件制造,无需转移到另一个绝缘基板上。在六边形 SiC 晶片的硅端面 (Si 面) 上生长的石墨烯由于与 SiC 晶体的方位角取向一致,可以形成大域。与在相反 (碳) 面上生长的石墨烯相比,在 Si 面上,EG 还具有更可控的生长动力学。最近,通过优化