温度2:125±10°t1和T2之间的温度变化很快,在一个周期中保持T1和T2 30分钟
声明................................................................................................................................ 1
目 录 ........................................................................................................................... 9
本公司的控股股东 无锡华微 指 无锡华润微电子有限公司 华润华晶 指 无锡华润华晶微电子有限公司 无锡华润上华 指 无锡华润上华科技有限公司 华润安盛 指 无锡华润安盛科技有限公司 华润微集成 指 华润微集成电路(无锡)有限公司 迪思微电子 指 无锡迪思微电子有限公司 华润芯功率 指 无锡华润芯功率半导体设计有限公司 华晶综服 指 无锡华晶综合服务有限公司 华微控股 指 华润微电子控股有限公司 华润赛美科 指 华润赛美科微电子(深圳)有限公司 重庆华微 指 华润微电子(重庆)有限公司 矽磐微电子 指 矽磐微电子(重庆)有限公司 杰群电子 指 杰群电子科技(东莞)有限公司 润科基金 指 润科(上海)股权投资基金合伙企业(有限合伙) 润安科技 指 华润润安科技(重庆)有限公司 润西微电子 指 润西微电子(重庆)有限公司 华微科技 指 华润微科技(深圳)有限公司 润新微电子 指 润新微电子(大连)有限公司 国务院 指 中华人民共和国国务院 发改委 指 中华人民共和国国家发展和改革委员会 国务院国资委 指 国务院国有资产监督管理委员会 科技部 指 中华人民共和国科学技术部 财政部 指 中华人民共和国财政部 工业和信息化部、工信部 指 中华人民共和国工业和信息化部 中国证监会 指 中国证券监督管理委员会 上交所 指 上海证券交易所 元、万元、亿元 指 人民币元、万元、亿元 本报告期、报告期 指 2022 年 1 月 1 日至 6 月 30 日
在过去的几十年中,数字和模拟集成电路的集成密度和性能经历了一场惊人的革命。虽然创新的电路和系统设计可以解释这些性能提升的部分原因,但技术一直是主要驱动力。本课程将研究促成集成电路革命的基本微制造工艺技术,并研究新技术。目标是首先传授构建微型和纳米器件的方法和工艺的实际知识,然后教授将这些方法组合成可产生任意器件的工艺序列的方法。虽然本课程的重点是晶体管器件,但许多要教授的方法也适用于 MEMS 和其他微型器件。本课程专为对硅 VLSI 芯片制造的物理基础和实用方法或技术对器件和电路设计的影响感兴趣的学生而设计。30260133 电子学基础 3 学分 48 学时
1 、电源走线包括 GND 、 SW 和 IN ,走线必须保证宽和短。 2 、 SW 、 L 和 D 开关的节点,布线要宽和短,以减少电磁干扰。 3 、输入和输出电容尽量贴近芯片放置。 4 、 R1 和 R2 和 FB 脚连线必须尽可能保证短。 5 、 FB 脚反应灵敏,应远离 SW 。 6 、芯片 GND 、 CIN 和 Cout 应连接较近,直接到地线层。
1.充电模式 FM5012D 用线性方式对电池进行涓流 / 恒流 / 恒压三段式充电。当电池电压低于 V TRKL 时进行涓流充 电;当电池电压高于 V TRKL 时进行恒流充电;当电池电压接近 V BAT-REG 时进行恒压充电,此时充电电流 开始逐渐减小,当电流减小到 I FULL 时,判断电池已经充饱,芯片终止充电,待电池电压降低到 V RECHG 后进行再次充电 (Recharge) 。 2.充电软启动功能 当开始给电池充电时,芯片会控制充电电流逐渐增大到设定值,避免了瞬间大电流冲击引起的各种 问题。 3.充电电流设定 充电电流由内部电路设定为恒流 600 mA, 涓流充电为 60mA, I FULL 为 90 mA 可编程设置充饱电压为 500 mA, 涓流充电为 50mA , I FULL 为 75 mA 当输入供电不足或芯片温度过高时, I IN-LIM 会下降。 4.充饱电压设定 FM5012D 芯片默认充饱电压值为 4.20V 可编程设置充饱电压值为 4.35V 5.输入过压保护 输入电压过高,超过 V IN-OVP 时,芯片会控制关闭充电和升压输出,防止芯片和负载因为过压而损 坏,输入电压正常后充电恢复,风扇驱动输出 FAN 不恢复。 6.充电限流保护 当芯片 VIN 端口电压低于 4.7V 时,芯片进入 VIN 限流状态,充电电流逐渐减小,直至到零。 SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
注:在不同的应用中, C1 、 C2 可考虑只装一个:在 3V 应用中建议用一个 1uF 或以上;在 4.5V 应用中建议用一 个 4.7uF 或以上 , 均为使用贴片电容;在 6V 应用中建议用一个大电容 220uF+100nF 贴片电容; C2 均靠近 IC 之 VDD 管脚放置且电容的负极和 IC 的 GND 端之间的连线也需尽量短。即不要电容虽然近,但布线、走 线却绕得很远(参考下图)。当应用板上有大电容在为其它芯片滤波时且离 TC118AH 较远也需按如上要求再 放置一个小电容于 TC118AH 的 VDD 脚上。图中 C4 ( 100nF )电容优先接于马达上,当马达上不方便焊此 电容时,则将其置于 PCB 上 ( 即 C3) 。
当 Type-C 和 Type-A 其中一个端口接入设备时, Type-C 或 Type-A 端口都可以实现独 立的快充功能。当 Type-C 和 Type-A 都接入设备时, XPD977 会将输出电压降至 5V 给设 备供电,其中 Type-C 端口 PD 只广播 5V/3A ,保留 BC1.2 以及 Apple 2.4A ,而 Type-A 端 口则只保留 Apple 2.4A 。特别的,当 Type-A 口一直连接苹果充电线但未接入苹果手机时, Type-C 口仍然有快充功能。作为充电器应用时,充电线会经常与充电器连接在一起。 XPD977 完美解决了 Type-A 和 Type-C 口连接充电线应用时的快充难题。此外, Type-A 口 充饱关断电流阈值低至 10mA ,可支持智能穿戴设备小电流充电。
高功率 PDO : 5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/3.25A 高功率 APDO1 : 3.3-16V/3.25A 高功率 APDO2 : 3.3-21V/3A 低功率 PDO : 5V/3A, 9V/3A, 12V/2.5A, 15V/2A, 20V/1.5A 低功率 APDO1 : 3.3-16V/2A 低功率 APDO2 : 3.3-21V/1.5A