无-4.2 4.1 1.04 EXO-NI 2.0 4.7 4.9 4.9 1.02 ENDO-NI 1.9 4.7 5.3 1.02 ENDO-ONI 1.2 4.7 5.8 5.8 1.02 ENDO-ONI * ENDO-ONI * 1.0 4.5 5.0 1.02 ENDO-PONI 〜0 4.9 4.9 6.4 1.08使用1 H NMR SpectRoscopy计算了计算。b根据单体和催化剂的进料进行计算,并假设每个步骤都完全转换。c由THF中的三重检测尺寸排除色谱(SEC)确定,用狭窄的PMMA标准校准。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2023年5月2日。; https://doi.org/10.1101/2023.05.05.02.539129 doi:biorxiv Preprint
摘要:与传统的湿化学合成技术相比,超高真空条件下有机网络的表面合成几乎没有控制参数。分子沉积速率和基底温度通常是唯一需要动态调整的合成变量。本文我们证明,无需专用源,仅依靠回填氢气和离子规细丝即可创造和控制真空环境中的还原条件,并且可以显著影响用于合成二维共价有机骨架(2D COF)的类 Ullmann 表面反应。使用三溴二甲基亚甲基桥连三苯胺 [(Br 3 )DTPA] 作为单体前体,我们发现原子氢 (H • ) 会严重阻碍芳基 − 芳基键的形成,我们怀疑该反应可能是限制通过表面合成产生的 2D COF 最终尺寸的一个因素。相反,我们表明,控制相对单体和氢通量可用于生产大型自组装单体、二聚体或大环六聚体岛,这些单体、二聚体或大环六聚体本身就很有趣。从单一前体表面合成低聚物可避免湿化学合成时间长和沉积源多的潜在挑战。使用扫描隧道显微镜和光谱 (STM/STS),我们表明,通过此低聚物序列的电子状态变化提供了对 2D COF(在没有原子氢的情况下合成)的深刻见解,这是单体电子结构演变的终点。关键词:扫描隧道显微镜 (STM)、共价有机骨架 (COF)、三角烯、异三角烯、DTPA、自组装单层 (SAM)
2 赫尔辛基大学医学院内科系,赫尔辛基,芬兰;3 赫尔辛基大学医学院系统肿瘤学研究项目,赫尔辛基,芬兰;4 美国马萨诸塞州查尔斯顿麻省总医院癌症中心;5 美国马萨诸塞州波士顿哈佛医学院;6 美国马萨诸塞州波士顿丹娜法伯癌症研究所肿瘤内科系;7 挪威卑尔根豪克兰大学医院血液科医学系;8 卑尔根大学临床科学系癌症生物标志物中心,卑尔根,挪威;9 赫尔辛基大学医院综合癌症中心血液学系,赫尔辛基,芬兰;10 芬兰癌症研究所基金会,赫尔辛基,芬兰
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
同时为定向进化更亮的变体提供了新模板。荧光蛋白的亮度被定义为它们的摩尔消光系数与量子产率的乘积,它们分别是它们的发色团吸收光的能力和将吸收光转换成发射光的效率。虽然增加这两个性质中的任何一个都会成比例地增加亮度,但是人们还不太了解 RFP 结构的变化如何有益地影响它们的消光系数,这使得通过合理设计预测有益突变变得复杂。另一方面,已知荧光团的量子产率与它们的构象灵活性直接相关,8 – 10 因为运动会将吸收的能量以热量而不是光子的形式耗散。对于荧光蛋白,研究表明,通过亚甲基桥的扭转,发色团对羟基苯亚甲基部分的扭曲会导致非辐射衰减。10,11 因此,应该可以通过设计突变来限制对羟基苯亚甲基部分的构象灵活性,从而提高 RFP 亮度,从而提高量子产率。在这里,我们使用 Triad 软件 12 进行计算蛋白质设计,以优化暗淡单体 RFP mRojoA(量子产率 = 0.02)中发色团口袋的包装,我们假设这会使发色团变硬,从而提高量子产率。为此,对发色团对羟基苯亚甲基部分周围的残基进行了突变
哺乳动物的视觉系统由平行的分层专业途径组成。不同的途径在使用更适合支持特定下游行为的表示形式方面是专门的。在特定的情况下,最清楚的例子是视觉皮层的腹侧(“ What what”)和背(“ Where”)途径的专业化。这两种途径分别支持与视觉识别和运动有关的行为。至今,深度神经网络主要用作腹侧识别途径的模型。但是,尚不清楚是否可以使用单个深ANN对两种途径进行建模。在这里,我们询问具有单个损失函数的单个模型是否可以捕获腹侧和背途径的特性。我们使用与其他哺乳动物一样的小鼠的数据探讨了这个问题,这些途径似乎支持识别和运动行为。我们表明,当我们使用自我监督的预测损失函数训练深层神经网络体系结构时,我们可以在拟合鼠标视觉皮层的其他模型中胜过其他模型。此外,我们可以对背侧和腹侧通路进行建模。这些结果表明,应用于平行途径体系结构的自我监督的预测学习方法可以解释哺乳动物视觉系统中看到的一些功能专业。
在体内对先锋因素与染色质的接口如何促进转录控制的可及性。在这里,我们通过活果蝇血细胞中的原型GAGA先驱因子(GAF)直接可视化染色质关联。单粒子跟踪表明,大多数GAF是染色质结合的,稳定的结合分数显示出在染色质上存放在染色质上的核小体样限量超过2分钟,比大多数转录因子的动态范围更长。这些动力学特性需要GAF的DNA结合,多聚化和本质上无序的结构域的完全补充,并且是招募的染色质重塑剂NURF和PBAP的自主性,其活动主要使GAF的邻居受益于HSF,例如HSF。对GAF动力学的评估及其内源性丰度表明,尽管有势动力学,但GAF组成且完全占据了染色质靶标,从而提供了一种时间机制,从而维持对体内稳态,环境和发育信号的转录染色质的开放式染色质。
3BG,英国。 通讯作者Tobias U. Hauser Max Planck UCL计算机病和老化研究学院伦敦伦敦10-12 Russell Square London WC1B 5EH联合国电话:+44 / 207 679 5264电子邮件: 致谢:TUH得到了惠康亨利·戴尔爵士奖学金(211155/z/18/z)的支持,雅各布斯基金会(Jacobs Foundation)的赠款(2017-1261-04),医学研究基金会和大脑和行为研究基金会的2018年NARSAD年轻研究者Grant(27023)。 Max Planck UCL中心是由UCL和Max Planck Society支持的联合计划。 Wellcome Trust(203147/Z/16/Z)的核心资金支持惠康的人类神经影像中心。3BG,英国。通讯作者Tobias U. Hauser Max Planck UCL计算机病和老化研究学院伦敦伦敦10-12 Russell Square London WC1B 5EH联合国电话:+44 / 207 679 5264电子邮件:致谢:TUH得到了惠康亨利·戴尔爵士奖学金(211155/z/18/z)的支持,雅各布斯基金会(Jacobs Foundation)的赠款(2017-1261-04),医学研究基金会和大脑和行为研究基金会的2018年NARSAD年轻研究者Grant(27023)。Max Planck UCL中心是由UCL和Max Planck Society支持的联合计划。Wellcome Trust(203147/Z/16/Z)的核心资金支持惠康的人类神经影像中心。
1 辛辛那提儿童医院研究基金会分子与发育生物学研究生项目,美国俄亥俄州辛辛那提 45229;2 辛辛那提大学医学院医学科学家培训项目,美国俄亥俄州辛辛那提 45229;3 辛辛那提大学医学院辛辛那提儿童医院医学中心发育生物学科,美国俄亥俄州辛辛那提 45229;4 美国国立卫生研究院国家眼科研究所眼科遗传学和视觉功能分部,美国马里兰州贝塞斯达 20892;5 辛辛那提大学生物医学工程系,美国俄亥俄州辛辛那提 45219;6 辛辛那提大学医学院儿科系,美国俄亥俄州辛辛那提 45229; 7 美国俄亥俄州辛辛那提市辛辛那提儿童医院医学中心生物医学信息学部,辛辛那提 45229;8 美国俄亥俄州辛辛那提市辛辛那提大学医学院生物医学信息学系,辛辛那提 45229