单眼3D检测(M3D)的目的是从单视图像中进行精确的3D观察定位,该图像通常涉及3D检测框的劳动密集型注释。最近已经研究了弱监督的M3D通过利用许多存在的2D注释来遵循3D注释过程,但通常需要额外的培训数据,例如LiDAR Point Clouds或多视图图像,这些数据会大大降低其在各种应用中的适用性和可用性。我们提出了SKD-WM3D,这是一个弱监督的单眼3D检测框架,利用深度插入以实现M3D,并具有单一视图图像,而无需任何3D注释或其他培训数据。SKD-WM3D中的一个关键设计是一个自我知识的蒸馏框架,它通过融合深度信息并有效地减轻单核场景中固有的深度模棱两可,从而将图像特征转换为3D类似的表示形式,而无需计算上的计算层面。此外,我们设计了不确定性感知的分离损失和梯度定位的转移调制策略,分别促进了知识获取和知识转移。广泛的实验表明,SKD-WM3D明显超过了最新的实验,甚至与许多完全监督的方法相当。
只要没有出色的情况,就可以在互联网或其未来的替代品上提供此文档,或者将来的替代品可用。访问该文档意味着每个人都可以阅读,下载,打印单个副本以供个人使用,并将其不变用于非商业研究和教学。以后的版权转移无法取消此情况。任何对文档的任何其他用途都需要作者的同意。为了确保真实性,安全性和可及性,有技术和行政性质的解决方案。作者的非营利权包括被提及为作者的权利,以至于以上描述的方式使用文档时需要以这种形式或以这种形式或以这种形式更改或呈现的文档进行保护,以使作者的文学或艺术或自我自我推荐。有关LinköpingUniversity Electronic Press的更多信息,请参见出版商的网站http://www.ep.liu.se/。
我们提出了来自单眼RGB视频的动态3D头部重建的单眼神经参数头模型(Mono NPHM)。到此为止,我们提出了一个潜在的空间空间,该空间在神经参数模型的顶部参数化纹理场。我们限制了预测的颜色阀与基础几何形状相关,以便RGB的梯度有效地影响反向渲染过程中的潜在几何代码。为了提高表达空间的代表能力,我们使用超二维增强了向后变形场,从而在拓扑具有挑战性的表达式中显示出颜色和几何表示。使用Mono NPHM作为先验,我们使用基于符号距离字段的体积渲染来处理3D头重建的任务。通过nu毫无反转,我们使用面部锚点构成了具有里程碑意义的损失,这些损失与我们的规范几何表示紧密相关。为了评估单眼RGB视频的动态面部重建任务,我们在休闲条件下记录了20个具有挑战性的Kinect序列。单nphm超过 -
摘要 - 对象姿势估计是一项核心感知任务,可以使对象操纵和场景理解。允许快速推理的广泛可用,廉价和高分辨率的RGB传感器和CNN使单眼方法特别适合机器人应用。我们观察到,以前的调查是针对不同方式,单视图设置以及考虑多种应用程序的数据集和指标的建立最新技术的调查。但是,我们认为这些作品的广泛范围阻碍了对单眼方法的开放挑战的识别,并妨碍了对其在机器人技术中应用的有希望的未来挑战的推论。通过对机器人技术和计算机愿景的最新出版物提供统一的看法,我们发现遮挡处理,姿势表示以及正式化和改善类别级别的姿势估计仍然是与机器人技术高度相关的基本挑战。此外,为了进一步改善机器人性能,大物体集,新颖的对象,分裂材料和不确定性估计是中心的,在很大程度上尚未解决开放挑战。为了解决这些问题,需要改进算法的本体论推理,可变形性处理,场景级别的推理,现实数据集以及算法的生态足迹。
第 3 章:方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 测试阶段:情绪分类.......................................................................................................................................13
毫无疑问,高保真3D头发对于实现现实,艺术表达和沉浸在计算机图形中至关重要。现有的3D头发建模方法取得了令人印象深刻的性能,但实现高质量头发重建的挑战仍然存在:它们要么重新确定严格的捕获条件,因此很难实现实践应用,或者很大程度上依赖于学到的先前数据,并在图像中遵守细节细节。为了应对这些挑战,我们提出了Monohair,这是一个通用框架,以从单元视频中实现高保真的头发重建,而对环境没有具体要求。我们的方法将头发建模过程分为两个主要阶段:精确的外部重建和内部结构推断。使用基于补丁的多视图优化(PMVO)精心制作外部。此方法从策略性地收集并集成了从多个视图(独立于先前数据)产生高保真外部3D线图的头发插入。此地图
实现统一的单眼3D对象检测,包括室内和室外场景,在机器人导航等应用中非常重要。然而,涉及各种数据方案来训练模型引起了挑战,因为它们的特性显着不同,例如,二 - 几何特性和异质域分离。为了应对这些挑战,我们根据鸟类的视图(BEV)检测范式建立了一个检测器,在该检测范式中,当采用多个数据方案以训练检测器时,明确的特征投影有利于对几何学学习模棱两可。然后,我们将经典的BEV检测体系结构分为两个阶段,并提出了不均匀的BEV网格设计,以处理由上述Challenges引起的收敛不稳定。此外,我们开发了稀疏的BEV功能策略,以降低计算成本和处理异质域的统一操作方法。将这些技术结合起来,得出了一个统一的检测器Unimode,它超过了富有挑战性的Omni3D数据集(一个大规模的数据集(一个室内和室外场景))的先前最先进的AP 3D,揭示了Bev bev tor tor tor tor tor tor tor unified 3D对象的第一个成功概括。
从2D图像中估算深度在各种应用中至关重要,例如对象识别,场景重建和导航至关重要。它在增强现实,图像重新关注和细分方面具有显着优势。在本文中,我们根据传输学习编码器和高级解码器结构提出了一个优化的U-NET网络,以估算单个2D图像的深度。编码器– decoder架构是从Resnet152v2构建的,作为编码器和改进的基于U-NET的解码器,以实现准确的深度预测。引入的RESNET152V2网络已在广泛的Imagenet数据集上进行了预估计,该数据集具有为大规模图像分类提取丰富且可推广的特征的权重。该提出的编码器可以具有先验知识来减少训练时间并改善对象位置识别。在解码器中设计的提议的复合上采样块(CUB)应用了2倍和4倍双线性插值,结合了一速式转置卷积,以扩展从编码器获得的低分辨率特征图,从而使网络恢复了更详细的细节。跳过连接用于增强解码器的表示能力。每个向上采样块的输出与相应的池化层串联。来自不同量表的特征融合有助于捕获本地和全球上下文信息,从而有助于更准确的深度预测。此方法利用RGB图像和深度图作为NYU DEPTH DATASET V2的训练输入。实验结果表明,基于转移学习的编码器,再加上我们提出的解码器和数据增强技术,可以使复杂的RGB图像转换为准确的深度图。系统根据深度数据范围为0.4至10 m,准确地对不同的深度范围进行了分类。通过使用渐变色尺度将不同的深度映射到相应的颜色,可以在2D图像上执行精确的深度分类。
自主驾驶是未来的趋势。准确的3D对象检测是实现自动驾驶的先决条件。目前,3D对象检测依赖于三个主要传感器:单眼相机,立体声摄像机和LIDAR。与基于立体摄像机和激光镜头的方法相比,单眼3D对象检测提供了优势,例如广泛的检测字段和低部署成本。但是,现有的单眼3D对象检测方法的准确性不是理想的,尤其是对于遮挡目标。为了应对这一挑战,本文引入了一种新颖的方法,用于单眼3D对象检测,称为SRDDP-M3D,旨在通过考虑目标之间的空间关系,并通过脱钩方法来改进深度预测,以改善单眼3D对象检测。我们考虑如何在环境中相对于对象相对于对象的定位,并编码相邻对象之间的空间关系,对于遮挡的目标,检测性能是专门提高的。此外,还引入了将目标深度预测到目标视觉深度和目标属性深度的两个组成部分的策略。此解耦旨在提高预测目标整体深度的准确性。使用KITTI数据集的实验结果表明,这种方法显着提高了闭塞靶标的检测准确性。