摘要。Opticks是一个开源项目,它通过集成通过NVIDIA OPTIX 7 + API访问的GPU射线跟踪来加速光光子仿真,并具有基于GEANT4的仿真。已经测量了第一个RTX生成的单个NVIDIA Turing GPU,以提供超过1500倍单线GEANT4的光子光子模拟速度因子,并具有完整的Juno Analytic GPU几何形状自动从GEANT4 GEOM-ETRY转换。基于GEANT4的CUDA程序,实施了散射,吸收,闪烁体再发射和边界过程的光学物理过程。波长依赖性的材料和表面特性以及重新发射的反向分布函数被交织成GPU纹理,从而提供快速插值的属性查找或波长产生。在这项工作中,我们描述了采用全新的NVIDIA OPTIX 7 + API所需的几乎完整的重新实现,现在实现了基于OPTIX使用的CUDA,仅限于提供相交。重新实现具有模块化的许多小型标头设计,可在GPU和CPU上进行细粒度测试,并从CPU / GPU共享中减少大量代码。增强的模块化已使CSG树的通用 - 类似于G4Multiunion的“列表节点”,从而改善了复杂CSG固体的表现。还支持对多个薄层(例如抗反射涂层和光阴道)的边界的影响,并使用CUDA兼容传递矩阵方法(TMM)计算反射,透射率和吸收性的计算。
以非侵入性和定量的方式在体内实时追踪细胞、分子和药物是当代医学的优先需求,用于阐明细胞功能、监测病理过程和制定有效的治疗策略。[1] 在现有的诊断技术中,基于质子的磁共振成像( 1 H-MRI)在对软组织进行成像方面表现良好,没有深度限制,可以提供高分辨率、解剖和功能信息,而无需使用电离辐射和放射性核素。 [2] 为了进一步增强 MRI 对比度,通常使用钆或氧化铁基探针进行诊断,但它们的敏感性和特异性有限,并且其安全性仍存在争议,因为经常有毁灭性的晚期不良反应被报道或仍有待研究。 [3] 作为这些造影剂的替代品,基于氟化( 19 F)化合物的替代品正变得越来越有前景,由于 19 F 具有高旋磁比,且体内背景可忽略不计,因此可提供“热点”成像功能。 [4] 因此,氟化探针在给药后可以直接检测并以高选择性进行定量分析,特别是当它们含有多种磁当量的 19 F 原子时,最近报道的超氟化分子探针 PERFECTA 就是这种情况(图 1)。 [5] 尽管 PERFECTA 具有尖锐的 19 F 单线态共振峰和合适的弛豫特性,但它显然不溶于水,对于生物医学应用,需要通过脂质乳化剂将其分散在水介质中,或封装到聚合物纳米颗粒或胶束中。 [5,6]
手性分子材料能够发射循环极化发光(CPL)在过去几十年中引起了极大的兴趣,这是由于CP-Light在广泛的应用中的潜力。尽管现在已经报告了具有蓝色,绿色和黄色排放的CP发光分子,但由于有机和有机金属化合物的NIR CPL落后于落后的NIR CPL,这是由于促进了这种低能区域激发态的辐射去激发状态的双重挑战,同时确保了一个重要的磁性二极管过渡时刻,这是一种生成的cpl,这是生成的cpl。基于多功能性手性芳基氨基喹啉配体,我们报告了手性供体 - 受体铂(II)配合物的合成和手性特性,显示CPL,显示CPL延伸至近900 nm。有趣的是,这些发射器在溶液中既显示荧光和磷光发射,强度取决于有机配体的电荷转移特征。实验和理论研究表明,此特征强烈影响这些复合物的单线和三重态激发态与相关磷光寿命之间的跨系统交叉事件。对CPL的效果不太重要,大多数复合物显示出具有高于C a的值的发光异构因子。210-3左右约800 nm。
摘要:通过改变金属离子的性质可以控制发色团-自由基复合物电子基态 ( 2 S 0 /D 0 ) 中光诱导电子自旋极化 (ESP) 的符号和强度。该复合物由一个有机自由基 (硝基氮氧化物,NN) 通过一个间位亚苯基桥与一个供体受体发色团共价连接而成,( bpy)M(CAT- m -Ph-NN ) ( 1 ) (bpy = 4,4'-二叔丁基-2,2'-联吡啶,M = Pd II ( 1-Pd) 或 Pt II ( 1-Pt ),CAT = 3-叔丁基儿茶酚酸酯,m -Ph = 间位亚苯基)。在这两种复合物中,可见光的光激发都会产生初始交换耦合、3 自旋(bpy•-、CAT+• = 半醌 (SQ) 和 NN•)、电荷分离双线 2 S 1(S = 发色团激发自旋单线态)激发态,该激发态通过 2 T 1(T = 发色团激发自旋三线态)态迅速衰减到基态。该过程预计不会具有自旋选择性,并且对于 1-Pd 仅发现非常弱的发射 ESP。相反,在 1-Pt 中产生强吸收 ESP。推测零场分裂引起的发色 2 T 1 态与 4 T 1 态(1-Pd 和 1-Pt)之间的跃迁,以及自旋轨道引起的 2 T 1 态与 NN 基四重态(1-Pt)之间的跃迁,导致了极化差异。
摘要 光系统 II (PSII) 利用红光的能量分解水并还原醌,这是一个基于叶绿素 a (Chl-a) 光化学的耗能过程。两种蓝藻 PSII 可以使用叶绿素 d (Chl-d) 和叶绿素 f (Chl-f) 进行相同的反应,但需要使用能量较低的远红光。Acaryochloris marina 的 PSII 的 35 个 Chl-a 中除了一个以外全部被 Chl-d 取代,而兼性远红光物种 Chroococcidiopsis thermalis 的 PSII 只有 4 个 Chl-f、1 个 Chl-d 和 30 个 Chl-a。从生物能量学角度考虑,远红光 PSII 预计会失去光化学效率和/或对光损伤的恢复能力。在这里,我们比较了 Chl-f-PSII、Chl-d-PSII 和 Chl-a-PSII 中的酶周转效率、正向电子转移、逆反应和光损伤。我们表明:(i) 所有类型的 PSII 都有相当的酶周转效率;(ii) Chl-d-PSII 受体侧的能隙改变有利于通过 P D1 + Phe - 重新填充进行重组,导致单线态氧产生增加,并且与 Chl-a-PSII 和 Chl-f-PSII 相比对高光损伤更敏感;(iii) Chl-f-PSII 中受体侧的能隙经过调整以避免有害的逆反应,有利于对光损伤的恢复而不是光利用效率。结果可以通过电子转移辅因子 Phe 和 QA 的氧化还原调节差异以及与主要电子供体共享激发能的叶绿素的数量和布局差异来解释。 PSII 通过两种不同的方式适应较低的能量,每种方式都适合其特定的环境,但具有不同的功能惩罚。
摘要:描述的是用于活细胞的配体指导的催化剂,生物正交化学的光催化激活。催化基是通过束缚的配体定位于DNA或微管蛋白的,红光(660 nm)光催化用于引发一系列DHTZ氧化,分子内二二二二二二二二二二二二氧化物,以及消除释放现场化合物的消除。Silarhodamine(SiR)染料,更常用地用作生物荧光团,用作具有高细胞相容性并产生最小单线氧的光催化剂。Hoechst染料(siR-H)和紫杉醇(siR-T)的商业上可用的共轭物分别用于将SIR定位于细胞核和微管蛋白。计算用于帮助设计新的氧化还原激活的光电,以释放苯酚或N-CA4,一种微管二动剂。在模型研究中,仅使用2 µm的SIR和40 µM光地摄影,在5分钟内完成了分离。原位光谱研究支持一种涉及快速分子内多尔斯 - 阿尔德反应的机制和确定消除步骤的速率。在细胞研究中,这种分离过程在光(25 nm)和siR-H染料(500 nm)的低浓度下成功。分解N-CA4会导致微管解聚和伴随细胞区域的降低。对照研究表明,H-H爵士在细胞内而不是在细胞外环境中催化脉冲。使用Sir-T,相同的染料作为光催化剂和荧光报告剂进行微管蛋白去聚合,并且在共聚焦显微镜下,由于活细胞中光催化脉冲,可以实时可视化微管蛋白去聚合。
摘要:Singlet Pission(SF)已被探索为通过产生更多激子来改善光伏性能的可行途径。通过高度的鸡际耦合实现了有效的SF,从而有助于电子超级交换以产生三重态。然而,强烈耦合的发色团通常会形成准分子,可以用作SF中间体或低能陷阱位点。然而,随后的破坏性过程需要最佳的电子耦合,以促进最初准备的相关三重态对孤立的三重态生产。构象柔韧性和介电调节可以通过调节鸡际表的电子相互作用来提供调整SF机制和效率的方法。在密集堆叠的传统有机固体中,这种策略不能轻易采用。在这里,我们表明SF活性发色团的组装周围定义明确的溶液稳定金属 - 有机框架(MOF)可以是模块化SF工艺的绝佳平台。一系列三个新的MOF,由9,10-双(乙烯烯基)蒽衍生的支柱建立,显示了拓扑定义的堆积密度和炭疽核的构象柔韧性,以决定SF机制。各种稳态和瞬态光谱数据表明,最初制备的单线种群可以偏爱准分子介导的SF或直接SF(均通过虚拟电荷转移(CT)状态)。这些溶液稳定的框架提供了介电环境的可调性,以通过稳定CT状态来促进SF过程。鉴于MOF是各种光物理和光化学发展的理想平台,因此产生大量长寿三胞胎可以在各种光子能量转换方案中扩展其实用程序。
技术数据电源电源电压:230/115 V AC 50/60 Hz±10%或24 V DC±20%功率消耗:3 VA工作温度:-10 ... +60°C额定电压:250V〜ACC。VDE 0110 between input, output/supply voltage Degree of pollution 2, over-voltage categoric III Test voltage : 4 kV=, between input, output/supply voltage - conformity : EN55022, EN60555, IEC61000-4-3/4/5/11/13 Input Current input : 0/4 ... 20 mA Ri 10 Ω overload max.3倍电压输入:0 ... 10 V RI 100kΩ过载最大。3倍RTD(PT100):-100 ... 400̊C传感器电流<1mA(无自加热)精度:电压/电流±0.1%,±1位数; RTD(PT100)±0.2°C,±1位数字温度系数电压/电流:0.005%/k RTD(PT100):0.01°C/K显示:LED 14.2 mm红色,黄色,黄色,绿色,绿色,蓝色,蓝色或20.3 mm红色指示: - 2000数字范围:-199999。 -1999“或“ 9999”)用2 Hz显示亮度闪烁(选项):从2 ... 100%步骤少,带有照片传感器模拟输出电压:0 ... 10 V dc dc max。5 MA,线性化,短路证明准确性:0.1%温度系数:0.005%/k情况:DIN 96x48毫米,材料PA6-GF; UL94 V-0尺寸:前96x48毫米,安装深度100毫米重量:300 g连接:夹具端子,2mm²单线,1.5mm²柔性电线,AWG14保护:前IP65,端子IP20,端子IP20,手指安全ACC。德国BGV A3
迈克尔·J·阿特上尉……(当时为中士)(陆军序列号),美国陆军步兵,第 19 装甲步兵营 A 连成员,1945 年 1 月 13 日至 20 日在法国哈滕附近的战斗中表现出非凡的英雄主义。当他的营被迫撤退,掩护部队被敌人切断时,他在敌人猛烈的炮火、迫击炮和小型武器火力下从一个小组转移到另一个小组,组织和鼓舞部队,以他积极和无畏的领导能力挽救了掩护部队。当营再次出击时,阿特上尉操作了一挺机枪,此外,他还向敌方阵地投掷了火炮,并阻止了德军的单线进攻。然后,他打后卫战,使一支被包围且人数处于劣势的连队从敌人的包围圈中撤退。艾特上尉的英雄主义和无所畏惧的纪律为他自己赢得了极大的荣誉,也符合军队的最高传统。Il.. 杰出服务奖章—根据总统指示,根据 1918 年 7 月批准的国会法案(Bul. 43, WD, 1018)的规定,授予下列军官因在所示期间在重大责任岗位上做出异常功绩和杰出服务而获得杰出服务奖章:美国陆军总参谋部(步兵)中校 .Tnhn W, BDJ£i1lU.(当时为上校)。 1944 年 11 月至 1948 年 2 月。(1945 年 WD,第 88 号将军令第 1 段第 VIII 节,关于授予中校鲍文(当时的上校)功绩勋章(第一枚 Oak-Lenf Olnster 奖章),以表彰其在 1044 年 11 月 1 日至 1048 年 8 月期间的服务,现已撤销。)
第一步:拨打 SCE 客户服务中心电话 1-800-655-4555 申请服务。选择选项 3 并按照提示操作。客户服务代表会将您的请求分配给相应的当地 SCE 服务中心。服务中心会将您的请求分配给当地服务规划师,规划师会在 5 个工作日内与您联系。请注意,紧急工作可能会影响此时间表。第二步:您指定的规划师将与您联系,讨论项目细节(或者,如果适用,提供仪表现场审查的结果),并要求您填写其他表格和信息,其中可能包括: 提交完整的客户项目信息表 设计选项书 – 任何需要图纸的项目都需要此授权书。如果选择了 SCE 设计,则 SCE 当地规划将进行设计。如果选择了申请人的设计,则项目将被转至 Tract Planning 以审查由 SCE 认可的绘图员创建的设计。请与您指定的当地规划师联系以获取更多信息。 场地平面图 - CAD 文件(2018 版或更早版本) 临时电力申请 停电申请表 面板单线 负载计算 授予契约 适用于您项目的其他信息 第三步:您指定的规划师将继续与您合作,审查并解释项目的时间表和范围。记得早点开始!这是客户和指定规划师之间的双向对话。定期沟通对于确保项目顺利进行非常重要。根据客户的施工时间表和所有要求的提交/完成情况,通电过程的时间长短会有所不同(也取决于客户的重新设计要求和紧急工作)。您越早联系 SCE 开始您的项目越好。再次强调,SCE 致力于通过及时提供安全可靠的能源来满足客户的需求。立即联系我们开始吧。