摘要:Mueller矩阵椭圆测量法已用于精确表征石英波板,用于在半导体行业苛刻的应用和高精度偏光仪。我们发现这种实验技术对使用是有益的,因为它使我们能够在宽光谱范围内获得绝对和精确的延迟测量,波浪板方向以及复合波板调节。在本文中,证明了在Mueller矩阵模型和数据处理中包括光活性的必要性。尤其是,石英的光活性会影响化合物双重垂直方向波动板之间的未对准的调整。我们证明,从模型中省略光学活性会导致未对准的值不准确。此外,模型中包括有限单色带宽引起的去极化效应。将光活性纳入Mueller矩阵模型已需要基于适当的本构方程的严格理论发展。已将广义的YEH的基质代数与双异型培养基用于计算具有减少对称性的手性材料中的本本征传繁殖。基于应用方法,作者提出了代表光学波动板和双座的Mueller矩阵的近似分析形式,并提供了有关该方法的分析和数值限制的讨论。
光和图像形成的传播:huygens的原理,费马特的原理,反射和折射法,在球形表面薄镜片上的折射,牛顿方程的薄镜。矩阵方法中的矩阵方法:射线传输矩阵,较厚的镜头,系统矩阵元素的重要性,基数,光学仪器,光学仪器,色和单色畸变。叠加和干扰:站立波,节拍,相位和组速度,两光束和多光束干扰,薄介电膜,米歇尔森和Fabry-perot干涉仪,分辨能力,自由云端范围。极化:线性,圆形和椭圆极化,琼斯矩阵,偏振光的产生,二色性,Brewster定律,双重折射,双重折射,电磁和磁光效应。衍射:单个缝隙,矩形和圆形光圈,双缝,许多缝隙,衍射光栅,分散剂,分散功率燃烧的光栅,区域板,矩形孔径。连贯性和全息图:时间连贯性,空间连贯性,点对象的全息图和扩展对象。Laser: Population Inversion, Resonators, Threshold, and Gain Energy Quantization in Light and Matter, Thermal Equilibrium and Blackbody Radiation, Non-laser Sources of Electromagnetic Radiation, Einstein's Theory of Light-Matter Interaction, Elements, operation, Characteristics, types and Parameters of Laser, Rate Equations Absorption, Gain Media, Steady-State Laser Output, Homogeneous Broadening,不均匀的拓宽,时间依赖性现象。
稳态视觉诱发电位 (SSVEP) 是一种广泛使用的脑机接口 (BCI) 范式,因其多目标能力和有限的脑电图电极要求而受到重视。传统的 SSVEP 方法经常因闪烁的光刺激而导致视觉疲劳和识别准确率下降。为了解决这些问题,我们开发了一种创新的稳态运动视觉诱发电位 (SSMVEP) 范式,该范式融合了运动和颜色刺激,专为增强现实 (AR) 眼镜设计。我们的研究旨在增强 SSMVEP 反应强度并减轻视觉疲劳。实验在受控的实验室条件下进行。使用 EEGNet 的深度学习算法和快速傅里叶变换 (FFT) 分析脑电数据,以计算分类准确率并评估反应强度。实验结果表明,双模态运动-颜色融合范式显著优于单模态SSMVEP范式和单色SSVEP范式,在中等亮度(M)和C=0.6的面积比下,准确率最高可达83.81%±6.52%。客观测量和主观报告均证实了双模态运动-颜色融合范式的信噪比(SNR)有所提高,视觉疲劳有所减轻。研究结果验证了双模态运动-颜色融合范式在基于SSVEP的脑机接口(BCI)中的应用前景,能够同时提升脑部反应强度和用户舒适度。
上下文。原始黑洞(PBHS)已被提议作为暗物质(DM)的潜在候选者,并近年来引起了显着关注。目标。我们的目标是深入研究PBH对气体性质的明显影响及其在塑造宇宙结构中的潜在作用。特别是,我们旨在分析不断发展的气体特性,同时考虑具有不同单色质量和不同数量的PBHs的存在。通过研究这种积聚产生的反馈效果,我们的最终目标是评估PBHs作为DM候选者的合理性。方法。我们开发了一个半分析模型,该模型在Z〜23。该模型可以对PBHS影响的气体的演变进行全面分析。我们的重点在于温度和氢丰度,并特别强调最接近光环中心的区域。我们探索位于质量窗口内的1、33和100m⊙的PBH质量,其中大量DM可能以PBH的形式存在。我们研究了由这些PBH组成的各种DM级分(F PBH> 10-4)。结果。我们的发现表明,由于气体特性中引起的显着变化,将排除质量为1m⊙的PBH和大于或等于10-2的PBH。同样,质量为33 m⊙和100 m⊙,而分数大于10-3。这些效应在距离光环中心最近的区域特别明显,可能导致晕空间内的星系延迟形成。
包括 EMS(发动机监控系统)的典型设置 Stratomaster Ultra Horizon XL 是一种数字多功能仪器,专为超轻型、超轻型、实验性和自制飞机以及任何允许在一般或特殊操作许可下使用此类仪器的飞机而设计。Ultra 采用半透反射式 5.7 英寸单色显示面板设计,配有白色 LED 背光。与当前技术的彩色显示器不同,单色面板适合在阳光直射下操作,使其成为许多小型飞机应用的唯一可行选择。面板无需遮光,即使在非常明亮的光线条件下也能产生清晰可读的图像,光线直接照射在面板上。Ultra Horizon XL 取代了以下先前的产品版本:1) Stratomaster Ultra L 2) Stratomaster Ultra X 3) Stratomaster Ultra HL 和 HX 4) Stratomaster Ultra RL(旋翼机)。Ultra Horizon XL 是一个完全可由用户配置的面板,可用作主要飞行仪表显示器、发动机监视器或两者兼用。Ultra 提供两个显示页面,每个页面都可以由用户配置,从 50 多个仪器和显示项目中进行选择。屏幕上的每个项目都可以放置在用户想要的位置,大多数仪器提供几种不同的显示选项。例如,您可以在模拟高度计和基于磁带的高度计之间进行选择。
2.1-1 主飞行显示布局 7 2.1-2 符号位置图 8 2.1-3 波音 727 驾驶舱 11 2.1-4 麦道 MD-80 驾驶舱 12 2.1-5 麦道 MD-11 驾驶舱 14 3.5-1 地平线的建议几何形状 30 4.2-1 单色 CRT 示意图 41 4.2-2 荫罩 CRT 的原理 43 4.2-3 特丽珑彩色 CRT 的工作原理 44 4.2-4 光束指示器 CRT 的构造 45 4.2-5穿透式荧光 CRT 的构造 46 4.2-6 CRT 的光束形成区域 47 4.2-7 磁和静电聚焦方法 48 4.2-8 光栅扫描模式 50 4.2-9 典型的 CRT 驱动电路 51 4.2-10 GaAsP LED 的相对光谱特性 55 4.2-11 LED 的示意图 56 4.2-12 相对光强与正向电流的关系 57 4.2-13 LED 光学串扰 58 4.2-14 LED 的共阳极连接 60 4.2-15液晶 64 4.2-16 TN 液晶单元的响应时间 65 4.2-17 液晶阵列的矩阵寻址 67 4.2-18 TFT 液晶显示器的横截面视图 69 · 4.2-19 TFEL 夹层结构 71 4.2-20 矩阵 EL 显示器电气模型 73 4.2-21 基本真空荧光显示器结构 75 4.2-22 AC 等离子显示面板结构 77 4.2-23 基本 HUD 组件 80
鉴于这些挑战,量子点彩色滤光片 (QDCF) 已被提出作为实现全彩微型 LED 显示器的替代方法 [2, 13, 17]。在该技术中,含量子点 (QD) 的材料(例如量子点光刻胶 (QDPR) 或量子点墨水)通过光刻或喷墨打印图案化为像素化阵列。然后,将该 QDCF 顶部玻璃以像素到像素的精度安装在全蓝色微型 LED 背板上。红色和绿色子像素中的红色 QD (R-QD) 和绿色 QD (G-QD) 会分别将蓝色微型 LED 发出的蓝光转换为红光和绿光,实现全彩显示。这样,只需要单色蓝色微型 LED 背板,这大大简化了传质过程,也减轻了温度引起的色移。在本文中,我们介绍了对 QDCF 微型 LED 技术的研究。我们使用光刻技术在 QDCF 顶部玻璃上图案化红色和绿色 QDPR。然后,将该顶部玻璃与蓝色微型 LED 背板精确粘合。测量所得器件的光学性能。此外,我们讨论了蓝光发射角度对 QDPR 厚度的适当选择以及优化精密粘合工艺以消除串扰的影响。结果,我们实现了具有良好显示性能的 1.11 英寸 228 ppi 全彩 QDCF 微型 LED 原型。讨论可能促进 QDCF 技术在微型 LED 显示器中的应用。
1。在6.5“颜色LCD,8颜色或8级单色,320 x 234像素显示窗口15分钟,在所有范围内显示为15分钟。深度,位置和关联时间每5 s存储24小时。以5 s,1或2分钟的间隔进行反击。2。显示模式导航,历史记录,DBS,日志,OS数据等。3。频率50和200 kHz 4。输出功率600 W RMS 5。范围量表5、10、20、40、100、200、400、800 m(可以为脚或fathoms选择)6。任何范围的准确性±2.5%。最小范围0.5 m(200 kHz),2.0 m(50 kHz)8。歧视20 m范围的每米深度5.8毫米,在200 m范围内0.58毫米9。脉冲重复率(PRR)深度(M)P/L(MS)PRR(脉冲/分钟)5/10 0.25 630 20 0.25 630 40 0.38 330 100 1.00 1.00 140 200 2.00 2.00 73 400,800 3.60 3.60 41 10。图片提前范围(M)显示窗口(分钟)5,10,20 1.8/15 40,100 8/15 200 20 400,800 30 11.接口(IEC 61162-1)输入:RMA,RMC,GLL,VTG,ZDA,GGA输出:SDDPT,SDDBT 12。警报浅水的视听警报,底部和电源故障13。传感器类型和梁宽50b-6b:28°,200b-8b:5.4°
摘要。这些研究利用了自组织映射 (SOM) 学习后输出的量化误差 (QE)。SOM 学习应用于具有可变白色和暗像素内容相对量的空间对比图像的时间序列,如单色医学图像或卫星图像。事实证明,学习后 SOM 输出的 QE 提供了图像随时间变化的潜在关键变化的可靠指标。当对比度强度保持不变时,QE 会随着图像空间对比度内容随时间的变化而线性增加。使用超快速 SOM 学习后,该指标能够捕捉大量图像时间序列中最小的变化,这一点迄今为止从未被怀疑过,这一点在计算机生成的图像、MRI 图像时间序列和卫星图像时间序列的 SOM 学习研究中得到了说明。对给定系列图像的拍摄时间的 QE 变化进行线性趋势分析,证明了该指标作为局部变化指标的统计可靠性。结果表明,QE 与记录测试图像系列的同一参考时间段内的重要临床、人口统计学和环境数据相关。研究结果表明,SOM 的 QE 易于实现,对于给定的 20 到 25 个图像系列,计算时间不超过几分钟,当目标是提供与图像间变化/无变化相关的即时统计决策时,它可用于快速分析整个图像数据系列。关键词。自组织映射 (SOM)、量化误差、图像时间序列、空间对比度、可变性、变化检测。
激光器是一种通过基于电磁辐射的刺激发射的光学扩增过程发出光的装置。术语“激光”是“通过刺激辐射的发射来放大光”的首字母缩写。爱因斯坦在1917年使用木板的辐射定律给出了激光的第一个理论基础,该定律是基于概率系数(爱因斯坦系数),用于吸收和自发和刺激电磁辐射的自发性和刺激发射。在694 nm处产生脉冲红色激光辐射的灯。伊朗科学家贾万(Javan)和贝内特(Bennett)使用HE和NE气体的混合物以1960年的1:10的比例制作了第一个气体激光器。R. N. Hall展示了1962年由砷化甘露尼德炮(GAAS)制成的第一个二极管激光,该激光在850 nm处发射辐射,并于同年后来开发了第一个半导体可见光的光线激光。激光与其他光源不同,因为它发出了高度连贯,单色,方向和强烈的光束。这些属性发现它们在许多应用中都有用。在其许多应用中,激光器用于光盘驱动器,激光打印机和条形码扫描仪; DNA测序仪器,光纤和自由空间光学通信;激光手术和皮肤治疗;切割和焊接材料;用于标记目标以及测量范围和速度的军事和执法设备;和激光照明在娱乐中显示。