在这项工作中,我们开发了卷积神经生成代码(Conv-NGC),这是对基于卷积/反卷积计算的情况进行预测性编码的概括。特定的是,我们具体地实现了一种灵活的神经生物学动机算法,该算法逐渐重新填充了潜在的状态图,以便动态地形成更准确的内部表示/重构自然图像模型。在复杂数据集(例如Color-Mnist,CIFAR-10和SVHN)等复杂数据集上进行了评估。我们研究了我们的大脑启发模型对重建和图像降解任务的有效性,并发现它具有卷积自动编码系统的竞争力,该系统通过误差的反向传播培训,并超过了它们,并超越了它们在造成的分发重构方面的表现(包括完整的90K ininic-10测试集)。关键字:预测编码;受脑为灵感的学习; compoter视觉,神经形态硬件,卷积
我们在 2019 年预测分析大赛 (PAC) 中名列第三,通过 T1 加权 MRI 脑部图像预测年龄,平均绝对误差 (MAE) 达到 3.33 岁。我们的方法结合了七种算法,当特征数量超过观测值数量时,这些算法可以生成预测,特别是两个版本的最佳线性无偏预测器 (BLUP)、支持向量机 (SVM)、两个浅层卷积神经网络 (CNN) 以及著名的 ResNet 和 Inception V1。集成学习是通过在训练样本的保留子集中的线性回归估计权重而得出的。我们进一步评估并确定了可能影响预测准确性的因素:算法的选择、集成学习以及用作输入/MRI 图像处理的特征。我们的预测误差与年龄相关,年龄较大的参与者的绝对误差更大,这表明需要增加该子群的训练样本。我们的研究结果可用于指导研究人员建立健康个体的年龄预测指标,可用于研究和临床,作为疾病状况的非特异性预测指标。
我们在 2019 年预测分析大赛 (PAC) 中名列第三,通过 T1 加权 MRI 脑部图像预测年龄,平均绝对误差 (MAE) 达到 3.33 岁。我们的方法结合了七种算法,当特征数量超过观测值数量时,这些算法可以生成预测,特别是两个版本的最佳线性无偏预测器 (BLUP)、支持向量机 (SVM)、两个浅层卷积神经网络 (CNN) 以及著名的 ResNet 和 Inception V1。集成学习是通过在训练样本的保留子集中的线性回归估计权重而得出的。我们进一步评估并确定了可能影响预测准确性的因素:算法的选择、集成学习以及用作输入/MRI 图像处理的特征。我们的预测误差与年龄相关,年龄较大的参与者的绝对误差更大,这表明需要增加该子群的训练样本。我们的研究结果可用于指导研究人员建立健康个体的年龄预测指标,可用于研究和临床,作为疾病状况的非特异性预测指标。
正常衰老和神经退行性疾病都会引起大脑的形态变化。与年龄相关的大脑变化是微妙的,非线性的,在空间和时间上是在受试者内部和人群内的。机器学习模型特别适合捕获这些模式,尽管健康的大脑外观种类繁多,但仍可以产生对感兴趣的变化敏感的模型。在本文中,卷积神经网络(CNN)和Rich UK Biobank数据集(当前可用的最大数据库)的力量被利用,以解决预测脑时代的问题。我们使用12,802 T1加权MRI图像的训练数据集和另外6,885张图像进行测试,以预测时间表年龄。所提出的方法在年龄预测上显示出竞争性的表现,但最重要的是,CNN预测错误∆ brainage =年龄 - 年龄 - 年龄与女性和男性群体中英国生物群的许多临床测量显着相关。,此外,在本实验中仅使用了一个成像方式的图像,我们检查了∆ brainage和来自英国生物库克所有其他成像方式的图像衍生的表型(IDP)之间的关系,显示出与已知年龄模式一致的相关性。此外,我们表明,使用非线性注册的图像训练CNN可以导致网络由注册过程的人工制品驱动,并且缺少衰老的微妙指标,从而限制了临床相关性。由于英国生物银行研究的纵向方面,将来有可能探索诸如该网络之类的模型的ΔBrainage是否可以预测任何健康结果。
在印度尼西亚,自上次冠状病毒大流行以来,自主机器人的发展已经大量出现。A-UV消毒机器人的目的是在关键区域(例如医院)净化细菌和病原体。由于微小的生物可能难以控制,因此没有让人接触的预期是A-UV消毒机器人的其他目的之一。但是,自主机器人的系统开发是优先事项,机器人可以在到达指定位置时提供无碰撞障碍物和目标锁。在这项研究中,提出了两项主要贡献来开发自动驾驶机器人:1)卷积神经网络(CNN)算法,以了解从数据集中锁定区域周围的潜力,以确保操作过程中无碰撞。2)原始设计,以确保具有几乎全向紫外线的自主机器人的紧凑性。我们将“盒子”作为障碍物和“标志停止”设计为CNN数据集中的目标。培训和验证绩效的绩效已确认为97%和99%,损失为0.3%。机器人原型也在大小为2.1 x 3 m的工作区内开发和测试。机器人原型成功执行了所需的任务。
摘要。运动图像分类是一项具有挑战性的任务,涉及多种类型的运动,在功能识别和次优检测结果方面遇到困难。这项研究采用了四个验证的模型,即残留网络50(Resnet-50),EfficityNet B7,密集连接的卷积网络121(Densenet-121),您只能查看一次版本8(Yolov8),以解决对100个不同运动图像类别进行分类的问题。数据集包含12200张体育图像,这是这项研究的强大实验基础。通过比较他们的表现,可以发现Resnet-50在训练集中表现出出色的性能,在验证集中的准确度为90.80%,88.75%的精度为88.75%。有效网络B7模型的训练精度为37.45%,推理的精度为62.42%。令人印象深刻的性能可能是由于其在处理特定的运动图像分类任务时的表示功能有限。densenet-121在培训中获得了71.791%的准确性,验证集获得了86.211%。与EfficityNet B7相比,其性能更好,这表明密集的连通性雅更适合提取图像特征。此外,Yolov8n模型在训练集的平均准确度中提供了出色的性能,验证集的平均精度为96.60%。这些结果展示了在运动图像分类和检测中yolov8n的圆润性能。总而言之,这项研究通过比较运动图像分类中不同算法的性能来解决解决复杂图像分类问题的宝贵见解。了解这些各种算法的优势和缺点对于更深入地理解图像分类任务和指导未来的研究努力至关重要。
1。Amunts K,Mohlberg H,Bludau S,Zilles K. Julich-Brain:人类大脑细胞结构的3D概率地图。Science 2020; 369:988-92。 2。 Andersson JL,Sotiropoulos SN。 一种校正方法的综合方法,以扩散MR成像中的非谐波效应和受试者运动。 Neuroimage 2016; 125:1063-78。 3。 Avants BB,Tustison NJ,Song G,Cook PA,Klein A,Gee JC。 对大脑图像注册中蚂蚁相似性表现的可重复评估。 Neuroimage 2011; 54:2033-44。 4。 Calamante F,Tournier JD,Heidemann RM,Anwander A,Jackson GD,Connelly A. 跟踪密度成像(TDI):超级分辨率属性的验证。 Neuroimage 2011; 56:1259-66。 5。 Fonov V,Evans A,McKinstry R,Almli C,CollinsD。从出生到成年期,无偏见的非线性平均适合年龄的脑模板。 Neuroimage 2009; 47:S102。 6。 Glasser MF,Smith SM,Marcus DS,Andersson JL,Auerbach EJ,Behrens TE等。 人类Connectome项目的神经影像学方法。 Nat Neurosci 2016; 19:1175-87。 7。 Gutierrez CE,Skibbe H,Nakae K,Tsukada H,Lienard J,Watakabe A等。 用神经示踪剂数据作为参考的基于扩散MRI的光纤跟踪的优化和验证。 SCI REP 2020; 10:21285。 8。 Hua K,Zhang J,Wakana S,Jiang H,Li X,Reich DS等。 立体定位空间中的道概率图:白质解剖结构和特定于区域的分析。 Neuroimage 2008; 39:336-47。Science 2020; 369:988-92。2。Andersson JL,Sotiropoulos SN。 一种校正方法的综合方法,以扩散MR成像中的非谐波效应和受试者运动。 Neuroimage 2016; 125:1063-78。 3。 Avants BB,Tustison NJ,Song G,Cook PA,Klein A,Gee JC。 对大脑图像注册中蚂蚁相似性表现的可重复评估。 Neuroimage 2011; 54:2033-44。 4。 Calamante F,Tournier JD,Heidemann RM,Anwander A,Jackson GD,Connelly A. 跟踪密度成像(TDI):超级分辨率属性的验证。 Neuroimage 2011; 56:1259-66。 5。 Fonov V,Evans A,McKinstry R,Almli C,CollinsD。从出生到成年期,无偏见的非线性平均适合年龄的脑模板。 Neuroimage 2009; 47:S102。 6。 Glasser MF,Smith SM,Marcus DS,Andersson JL,Auerbach EJ,Behrens TE等。 人类Connectome项目的神经影像学方法。 Nat Neurosci 2016; 19:1175-87。 7。 Gutierrez CE,Skibbe H,Nakae K,Tsukada H,Lienard J,Watakabe A等。 用神经示踪剂数据作为参考的基于扩散MRI的光纤跟踪的优化和验证。 SCI REP 2020; 10:21285。 8。 Hua K,Zhang J,Wakana S,Jiang H,Li X,Reich DS等。 立体定位空间中的道概率图:白质解剖结构和特定于区域的分析。 Neuroimage 2008; 39:336-47。Andersson JL,Sotiropoulos SN。一种校正方法的综合方法,以扩散MR成像中的非谐波效应和受试者运动。Neuroimage 2016; 125:1063-78。3。Avants BB,Tustison NJ,Song G,Cook PA,Klein A,Gee JC。对大脑图像注册中蚂蚁相似性表现的可重复评估。Neuroimage 2011; 54:2033-44。4。Calamante F,Tournier JD,Heidemann RM,Anwander A,Jackson GD,Connelly A.跟踪密度成像(TDI):超级分辨率属性的验证。Neuroimage 2011; 56:1259-66。5。Fonov V,Evans A,McKinstry R,Almli C,CollinsD。从出生到成年期,无偏见的非线性平均适合年龄的脑模板。Neuroimage 2009; 47:S102。6。Glasser MF,Smith SM,Marcus DS,Andersson JL,Auerbach EJ,Behrens TE等。人类Connectome项目的神经影像学方法。Nat Neurosci 2016; 19:1175-87。7。Gutierrez CE,Skibbe H,Nakae K,Tsukada H,Lienard J,Watakabe A等。用神经示踪剂数据作为参考的基于扩散MRI的光纤跟踪的优化和验证。SCI REP 2020; 10:21285。8。Hua K,Zhang J,Wakana S,Jiang H,Li X,Reich DS等。 立体定位空间中的道概率图:白质解剖结构和特定于区域的分析。 Neuroimage 2008; 39:336-47。Hua K,Zhang J,Wakana S,Jiang H,Li X,Reich DS等。道概率图:白质解剖结构和特定于区域的分析。Neuroimage 2008; 39:336-47。9。Jenkinson M,Bannister P,Brady M,SmithS。改进了对脑图像的鲁棒和准确的线性注册和运动校正的优化。Neuroimage 2002; 17:825-41。10。Jenkinson M,Beckmann CF,Behrens TE,Woolrich MW,
图像介绍是一种有前途但具有挑战性的方法,它填充了图像中巨大的自由形式空白区域。最近的大多数论文都集中于将蒙面的图像分成2个有效和无效元素的矩阵,从而使系统更加复杂。本文提出了一种名为Reconv的新型算法,该算法使用重复的标准卷积操作,该操作以相同的方式处理图像的有效元素和无效元素。我们建议的方法的结果重新配置,表明,与较早的方法相比,我们的系统产生的输出更适合于现实世界应用。在药物和酒精成瘾治疗和研究的背景下,该技术提供了几种独特而新兴的应用,例如治疗性视觉刺激修饰。介绍技术可以填补与成瘾相关图像中缺少的数据,例如损坏的MRI扫描或不完整的调查响应,从而增强了成瘾研究中使用的机器学习模型的预测能力。对两种数据集类型的广泛比较研究验证了我们的方法。使用PSNR,SSIM和FID等不同措施评估了建议策略的有效性。结果表明,与现有的现代方法相比,我们建议的方法在性能方面表现出色。
摘要。语音识别是计算机与人类之间的一种交流方式,是计算语言学或自然语言处理的一个分支,有着悠久的历史。自动语音识别 (ASR)、文本转语音 (TTS)、语音转文本、连续语音识别 (CSR) 和交互式语音响应系统是解决该领域问题的不同方法。性能的提高部分归因于深度神经网络 (DNN) 对语音特征中复杂相关性进行建模的能力。在本文中,与使用循环神经网络 (RNN) 处理语音等序列数据的传统模型不同,随着深度网络中不同架构的出现以及传统神经网络 (CNN) 在图像处理和特征提取中的良好性能,CNN 在其他领域的应用得到了发展。结果表明,可以通过 CNN 提取波斯语的韵律特征,对短文本进行语音分段和标记。通过使用 128 和 200 个滤波器作为 CNN 和特殊架构,检测率的误差为 19.46,并且比 RNN 更节省时间。此外,CNN 简化了学习过程。实验结果表明,CNN 网络可以成为各种语言语音识别的良好特征提取器。