摘要 — 已证实脱氧核糖核酸 (DNA) 能与聚偏氟乙烯 (PVDF) 相互作用,从而在某些铸造条件下增加电活性 β 相含量和压电响应。虽然使用 DNA 作为自极化剂有可能消除压电 PVDF 薄膜中额外拉伸和极化步骤的需要,但 DNA 极化 PVDF 的机制尚不清楚,这阻碍了该过程的优化。在此,我们进行了一项研究,以筛选干燥温度、核酸添加剂的量、PVDF 的重量百分比、旋铸速度和 PVDF 的分子量对旋铸 PVDF-DNA 混合薄膜的影响。分别使用傅里叶变换红外光谱 (FTIR) 和压电计量化所得薄膜的相组成和压电响应。我们发现 DNA 对 PVDF 薄膜的 β 相含量有显著影响;然而,这种影响在低干燥温度下被掩盖了。虽然 DNA 促进了 PVDF 电活性 β 相的形成,但我们找不到 DNA 增强 PVDF 压电响应的证据。这些结果与之前的文献相矛盾,之前的文献报告称 DNA 使 PVDF 的偶极子对齐,从而使薄膜表现出显著的压电响应。总体而言,这项研究发现,在某些铸造条件下,核酸添加剂对 PVDF 薄膜相组成有重要影响。
在过去的十年中,社会要求开发智能和多纸的材料,以满足行业4.0和物联网(IoT)范围中的数字化范式(IoT)。[1-3]在这种情况下,由于大量可能的应用,例如智能室内设计,人类健康监测和可穿戴电子设备[4-6]等可能的应用,增加的注意力一直集中在灵活且具有磨损的感应设备上。具体来说,压力和应变传感器是最需要的传感器类型之一。基于转导机械性,可以开发三种主要类型的传感器:压电,压电和电容感应机制。[5,7-9]压电传感器是最常用的传感器,通常由带电导电膜和柔性底物组成。拉伸复合结构时,微结构的变化会导致电阻随施加应变的函数的变化。此外,他们结合了伟大的
将孔隙度引入铁电陶瓷可以降低有效的介电常数,从而增强直接压电效应产生的开路电压和电能。然而,纵向压电系数的减小(D 33)随着孔隙率的增加,目前限制了可以使用的孔隙率范围。通过将排列的层状孔引入(Ba 0.85 Ca 0.15)(Zr 0.1 Ti 0.9)O 3中,本文在D 33中表现出与其密集的对应物相比,D 33中的22–41%增强。这种独特的高D 33和低介电常数的独特组合导致了明显改善的电压系数(G 33),功能收获(FOM 33)和机电耦合系数(k 2 33)。证明改进特性的基本机制被证明是多孔层状结构内的低缺陷浓度和高内极化场之间的协同作用。这项工作为与传感器,能量收割机和执行器相关的应用的多孔铁电剂设计提供了见解。
尽管已采取合理的努力来获得第三方的所有必要权限,以在本文中包括其受版权保护的内容,但在此公认的手稿版本中可能不存在它们的全部引用和版权行。在使用本文中的任何内容之前,请参阅IOPSCIERCE上的记录版本,一旦发布以获取完整的引用和版权详细信息,因为可能需要权限。所有第三方内容均受到完全保护的保护,并且未按照CC按照许可在金色的开放访问基础上发布,除非该记录版本中的图标题中明确说明了这一点。
这种相对较新的技术可用于帮助小鼠等动物受孕,而标准 ICSI 无法帮助这些动物受孕(Kimura 和 Yanagimachi 1995)。压电辅助显微注射已被用作一种基因转移方法,其中精子被外源 DNA 包裹并注射到卵母细胞中(Perry 等人 1999)。该技术所需的工作站与标准 ICSI 工作站非常相似,但增加了一个连接到注射微量移液器支架的压电冲击驱动器。该装置轴向振动注射微量移液器并钻入卵母细胞。这种方法提高了成功率。由于微量移液器的振动幅度很小但频率很高,因此必须使用不会产生共振的机械稳定微操作器。微操作器越稳定,从压电冲击驱动器到微量移液器尖端的能量传输就越高效。大多数压电辅助微注射方案都需要使用汞丸来稳定注射微量移液器。不建议在 XenoWorks 数字微注射器中使用汞,尽管 XenoWorks 模拟微注射器适合此目的。
摘要 — 在本文中,我们提出了一种将声音转换为电能并将其用于各种应用的想法。压电换能器用于将声音转换为电能。其背后的基本原理是压电效应。当电能施加在压电晶体上时,它开始振动。同样,当由于声音或机械能施加在压电晶体上而产生的振动时,也会产生压电现象。这里,四个压电换能器与声音传感器连接,以产生 3-5 伏范围内的输出电压。输出电压通过使用升压转换器来升压。然后将电压存储在可充电电池中并用于交通信号控制器等应用。PIC 微控制器用于为交通信号控制器提供操作标准和时间延迟,继电器用于说明应用目的索引术语 - 压电换能器、PIC、声音传感器、升压转换器、可充电电池
背景:由于其压电性能,聚乙烯二烯氟化物(PVDF)在电子设备中广泛使用,可以通过掺入钛酸钡(BT)来增强其。然而,各种制造方法对PVDF/BT纳米复合材料的结晶度和β相含量的影响尚未得到充分忽视。特定背景:不同的制造技术,包括3D打印,静电纺丝,溶剂铸造和压缩成型,影响PVDF/BT复合材料的结构和功能特性。PVDF的结晶度和β-相对于优化这些材料的介电和压电性能至关重要。知识差距:缺乏全面的研究,比较了这些制造技术对PVDF/BT复合材料的结晶度和β相增强的影响,尤其是与它们的介电,压电和机械性能有关。的目的:本研究旨在使用各种制造方法对结晶度和β相形成进行将BT整合到PVDF中的影响。目标是确定这些修饰如何影响材料的结构特征,从而影响其电子特性。结果:X射线衍射(XRD)和傅立叶转换红外光谱(FTIR)分析表明,与溶剂铸造和压缩成型相比,3D打印和电纺丝方法显着增强了PVDF/BT复合材料的β相含量和结晶度。扫描电子显微镜(SEM)证实了使用这些技术改善了PVDF矩阵中的形态特征。新颖性:这项研究提供了有关不同制造方法如何优化PVDF/BT纳米复合材料的结晶度和β期的新见解,这对于增强压电性能至关重要。的含义:研究结果表明,3D打印和静电纺丝优于制造具有增强压电特性的PVDF/BT复合材料的传统方法。这些结果可以通过选择适当的制造技术来实现所需的材料特性来指导更有效的电子设备的开发。
摘要 本章介绍了基于压电致动器的微/纳米定位器及其在保护生态系统生物多样性和实现可持续制造业方面的作用。这些定位器具有微/纳米分辨率的精确度,并且改进和辅助了繁殖和体细胞核移植,在保护濒危物种免于灭绝方面发挥着越来越重要的作用。研究表明,这些技术可能是我们减缓自然退化的关键因素。此外,压电驱动微/纳米定位器是附加精度提高系统的基础,该系统可以使过时的机床重新投入使用,只需进行微小改动,性能水平高于新机器。这避免了(并可以进一步防止)能源和材料的浪费,因为过时的机器或其主要部件否则将被丢弃。此外,压电驱动微定位器在振动辅助加工中起着重要作用,可降低能耗、提高产品质量并延长机器使用寿命。