摘要 - 本评论论文讨论了将智能材料纳入汽车行业,概述了其应用,相关的困难以及未来的范围。SMA,压电材料,MR流体,EAP和热电材料是具有卓越特性的智能材料,使它们能够积极对外部环境刺激做出反应。这些材料用于结构元素,传感器和执行器,能源管理系统以及乘客和驾驶员的便利和安全。尽管他们有可能提高车辆安全和环境保护,但一些挑战仍可能阻止其大规模采用。这些包括系统集成问题,可伸缩性注意事项以及与其实施相关的约束。可以克服这些障碍,这些材料及其潜力可以通过跨学科的工作和快速的技术开发充分探索,以提供更优化的驾驶员体验和环境保护。在这个方向上的潜在研究可能与材料开发,新领域的实施以及AI,机器学习和自动驾驶等应用技术有关。
压电材料(更具体地说是铁电材料)的理论描述几乎涵盖了整个物理学和应用数学领域。电活性材料现象早已为人所知,始于 18 世纪在后来被称为罗谢尔盐的物质中发现的塞格奈特电。这些材料将电能、机械能、热能和光能相互转换的基本能力已导致无数的技术应用。因此,关于该主题的文献数量庞大且仍在增长也就不足为奇了。从 Landdolt-Bornstein7,8 的专门用于记录其测量特性的卷册中可以了解到明确涉及压电和铁电物质的工作量。这篇简短的评论将主要关注铁电陶瓷,并将只关注描述该理论主要发展的工作。
Francesco COTTONE 是意大利佩鲁贾大学物理与地质学系的副教授。2008 年,在攻读物理学博士学位期间,Francesco 率先提出了非线性振动能量收集系统的概念。自 2013 年以来,Francesco 一直担任欧盟资助的能量收集项目(NanoPower、PROTEUS、EnABLES、IESRES)的首席研究员和当地负责人。他目前负责协调 VITALITY 创新生态系统 (PNRR) 内正在进行的“用于能量收集的纳米结构和先进材料和设备”项目,并指导物理与地质学系的微纳米能源技术实验室。他是 PowerMEMS 和 EnerHarv 国际委员会的活跃成员。他的科学经验包括 MEMS 和 NEMS、能量收集系统和创新压电材料。他的出版物被引用超过 5,000 次。
1. 材料科学与工程 2. 纳米科学与纳米技术 3. 生物材料 4. 先进材料 5. 能源材料 6. 复合材料 7. 聚合物材料 8. 材料表征 9. 材料化学 10. 材料物理 11. 结构与纳米结构材料 12. 石墨烯、碳与二维材料 13. 计算材料科学 14. 电子、光学与磁性材料 15. 介电与压电材料 16. 绿色技术材料 17. 电池与固体电解质材料 18. 材料合成与加工 19. 材料与冶金学 20. 玻璃基材料 21. 仿生材料 22. 材料制造创新 23. 金属铸造 24. 晶体学 25. 凝聚态物理学 26. 半导体与超导体 27. 矿物学 28. 光学 作者指南
摘要 本出版物研究了新型压电材料在振动飞机结构上的能量收集应用。这些材料与传统的压电换能器材料(如压电陶瓷)相比具有显著的优势。特别是,木质材料形式的生物材料和辐照交联聚丙烯形式的铁电驻极体是研究的对象。两种材料都显示了机械和机电性能方面的材料特性。对于木质材料,使用压缩试验,因为材料具有承重性能。铁电驻极体具有高柔顺性,因此在拉伸试验中研究了材料特性,并在四点弯曲试验中研究了其粘在动态弯曲表面上的行为。此外,还介绍了铁电驻极体材料模型的 FE 模型,并通过实验结果进行了验证。给出了两种材料不同概念的功率输出估计。
I. 引言 如今,体声波 (BAW) 器件已用于要求高集成度和高性能的现代通信系统。基于氮化铝 (AlN) 或氧化锌 (ZnO) 等的 BAW 器件已得到广泛研究,该技术现已成为集成高达数 GHz 的本振和滤波器等窄带元件 (5%) 的有效替代方案 [1–4]。为了扩展 BAW 技术的应用,其他压电材料也受到研究,并被视为实现宽带元件的有希望的解决方案。本文提出了一种可应用于窄带和宽带带通滤波器设计的程序。该设计程序基于 BAW 谐振器的集总元件模型的优化,该模型与技术参数直接相关。本文讨论了所提方法的背景,即有效性,并选择了两个示例进行说明。第一个例子是为 UMTS 通信设计的窄带(3%)带通滤波器 [5]。第二个
1 机械工程系,1 Sanjay Gandhi 理工学院,巴拉里,印度 摘要:经过修改的材料可以以可预测和可逆的方式对外部刺激(例如特定量的机械应力或特定温度等)做出反应,可以称为智能材料。术语“响应性材料”也适用于智能材料,因为它们具有响应性。虽然“反应性”材料是更合适的翻译,但“活性”材料更常用。智能材料有很多不同的类型,例如形状记忆合金、磁流变 (MR)、电流变 (ER) 和压电材料。例如,可以通过调节电源来改变 ER 和 MR 流体的粘度,并且可以通过改变电场强度来改变电极之间粒子的排列。这些智能材料首次被部署在汽车和航空航天工业中,用于各种应用。本文重点介绍了智能材料的应用和使用。索引术语 - 材料、响应性、智能材料、应用。
编辑信息智能/多功能材料和结构广泛用于医疗,汽车,能源和航空航天技术,用于诸如力传感,致动,能量收集和结构健康监测等应用。在过去的几十年中出现了大量表现出有趣的多物理现象的智能材料,但其中只有很少的部分已成功地转化为工程应用。大多数工程应用程序,例如,由于其强大的响应,可重复性和广泛的可用性,使用压电材料和形状的记忆合金(SMA)。因此,有必要增强现有智能材料的响应以满足技术需求。此外,随着人工智能,仿生学,纳米技术等领域的最新科学进步,对智能/响应式材料的需求越来越大,可以实现微型化,提高数据存储和能源效率。要解决这些更大的问题并更好地利用现有的智能材料,重要的是,各种科学和工程社区的研究进步都重要。
了解直升机旋转部件上的运行负载对于基于状态的维护 (CBM) 和健康使用监测系统 (HUMS) 非常重要。过去,需要部署滑环限制了对旋转部件的监测。无线技术消除了滑环,但电池维护问题仍然是一个主要障碍。本文报告了下一代无线传感器,它通过使用压电材料将应变能转换为存储的电能来消除电池维护。存储的能量用于测量、记录和传输应变和负载信息。已经开发出原型能量收集无线俯仰链路传感系统。在低使用率直升机运行条件下,消耗的能量小于收集的能量,使应变和负载传感器能够永久运行而无需电池维护。打破了监测直升机旋转部件的障碍,该技术有可能大大提高未来的 HUMS 能力。
摘要:物联网 (IoT) 的快速发展带动了低功耗传感器的开发。然而,物联网扩展的最大挑战是传感器的能量依赖性。为物联网传感器节点提供电源自主性的一个有前途的解决方案是从环境源收集能量 (EH) 并将其转换为电能。通过 3D 打印,可以创建单片收集器。这降低了成本,因为它消除了对后续组装工具的需求。得益于计算机辅助设计 (CAD),收集器可以根据应用的环境条件进行专门调整。在这项工作中,设计、制造并电气表征了压电谐振能量收集器。还进行了压电材料和最终谐振器的物理表征。此外,还使用有限元建模对该设备进行了研究和优化。在电气特性方面,确定该设备在最佳负载阻抗为 4 M Ω 且受到 1 G 加速度时可实现 1.46 mW 的最大输出功率。最后,设计并制造了一个概念验证设备,目的是测量流过电线的电流。