1计算机科学与工程,1 Dayananda Sagar技术与管理学院,印度班加罗尔摘要:对可持续能源的需求不断增长,促使人们探索了创新解决方案,以产生可再生能源。 这项研究旨在利用嵌入在快速破坏者中的创新技术来利用车辆运动,以产生可再生电力。 通过利用压电材料,齿条机制和混合能源系统,该平台优化了为城市基础设施供电的能源转换。 基于IoT的集成监控系统会动态调整流量密度和环境因素,从而确保有效的能源使用。 这种可持续的能源解决方案不仅解决了能源需求的上升,而且还通过为路灯,物联网设备和其他低压应用程序提供动力来支持智能城市计划。 考虑到可扩展性和成本效益的设计,该平台为传统电力系统提供了可再生,适应性和环保的替代方案,从而促进了能源独立性并降低了环境影响。 它的潜力在于创建自我维持的城市生态系统,同时与全球可持续性目标保持一致。 关键字 - 可持续能源,压电传感器,速度断路器,能量收集,机架和小齿轮机构,可再生能源系统,物联网集成。1计算机科学与工程,1 Dayananda Sagar技术与管理学院,印度班加罗尔摘要:对可持续能源的需求不断增长,促使人们探索了创新解决方案,以产生可再生能源。这项研究旨在利用嵌入在快速破坏者中的创新技术来利用车辆运动,以产生可再生电力。通过利用压电材料,齿条机制和混合能源系统,该平台优化了为城市基础设施供电的能源转换。基于IoT的集成监控系统会动态调整流量密度和环境因素,从而确保有效的能源使用。这种可持续的能源解决方案不仅解决了能源需求的上升,而且还通过为路灯,物联网设备和其他低压应用程序提供动力来支持智能城市计划。考虑到可扩展性和成本效益的设计,该平台为传统电力系统提供了可再生,适应性和环保的替代方案,从而促进了能源独立性并降低了环境影响。它的潜力在于创建自我维持的城市生态系统,同时与全球可持续性目标保持一致。关键字 - 可持续能源,压电传感器,速度断路器,能量收集,机架和小齿轮机构,可再生能源系统,物联网集成。
压电 (PE) 型加速度计 PE 型加速度计响应施加到其压电陶瓷或晶体传感元件上的机械应力,产生高阻抗静电荷输出。由于其高电荷灵敏度,压电陶瓷在电荷和电压模式加速度计中得到广泛应用。石英被公认为所有压电材料中最稳定的材料,也常用于通用 ICP ® 加速度计、校准传递标准以及 PE 压力和力传感器。电荷输出系统已经问世约 40 年。PE 加速度计通过低噪声电缆与高输入阻抗电荷放大器一起工作,该放大器将电荷信号转换为可用的低阻抗电压信号以供采集。电荷放大器提供信号阻抗转换、标准化和增益/范围调整。选项可能包括滤波、速度和/或位移积分以及输入时间常数的调整,这决定了低频响应。现代电荷放大器采用更有效的低噪声电路设计,并可能包含简化的 LCD 显示器和数字控制。一些“双模”型号可同时使用 PE 和 ICP ®
作为驱动力,诱导物理或化学电子转移过程来促进催化。[1–3] 自从机械催化被首次提出以来,[4] 它已被广泛应用于材料合成、[5] 水处理、[6] 回收或其他自由基相关化学等各个领域。[7] 近年来,利用压电/热电/铁电半导体的表面极化电荷,压电催化是一种新型的机械催化,已见报道,可通过机械刺激直接实现电化学反应。[8] 变形的压电/热电/铁电半导体的极化可以增强自由电荷和束缚电荷的能量,促进载流子的分离,增加参与催化反应的激发电荷的寿命。 [9,10] 压电催化不仅可以利用环境中的机械振动(如风或波浪),还可以利用工业系统中的冗余振动进行催化。因此,压电催化被认为是一种有前途的绿色机械催化。然而,压电、热电或铁电效应仅表现在具有非中心对称结构的压电材料中,例如纤锌矿结构,[11] 这极大地
众所周知,所有铁电材料都是压电材料,因此外部压力会使这些系统的尺寸变形,从而根据其传感能力产生合适的压力传感器。在所有铁电材料中,铅 (Pb) 基铁电材料由于其高灵敏度和耐用性而被发明并用作压力传感器。1 – 7 在过去的几十年里,这些系统已被用作电容器、传感器、执行器和静电设备等。8 – 17 过去,包括我们小组在内的许多作者都报道过在低压和高压范围内适用于压力传感器的铅基材料,其中介电常数、压电系数和电容电抗随压力发生显著变化。 1 – 3,5 – 7,13,18 – 26 然而,压力对介电常数变化的影响并不显著,以至于无法在实际高压传感器装置中实现。另一个缺点是介电常数与压力呈线性关系。为了克服这些缺点,我们一直在寻找具有高灵敏度和线性度的新型陶瓷材料。为了实现这一目标,我们选择了众所周知的 Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) 作为母体基质,并用适当的 Bi 浓度替代。
1硕士,科学与计算机研究学院,CMR大学,班加罗尔,卡纳塔克邦2 2号科学与计算机研究学院副教授,CMR大学,班加罗尔,卡纳塔克邦,卡纳塔克邦摘要,每天都有能源需求和环境问题的增加,需要可持续的替代方法。噪声污染一直是要担心的话题。因此,我们通过使用压电传感器将其转换为电能来利用噪声或声音。压电传感器使用压电效果将机械能将声波转化为电能。这项技术的潜在应用很多,包括从交通噪音,音乐甚至心跳收获能量。使用了压电能量收集传感器氟化物(PVDF)和锆甲酸铅(PZT)的研究。这些研究中实现的最大功率输出在0.77兆瓦至51.6兆瓦之间变化,具体取决于能量收割机的轮廓和所使用的声源的类型。使用压电传感器进行能源收集具有很大的潜力,可以从环境音源产生可再生能源。关键字:piezoelectric;聚偏二氟;铅锆钛酸铅;可再生能源;环境音源。引言压电材料自19世纪后期以来就以机械应力发电能力而闻名。最近,人们越来越关注使用压电传感器,从包括声波在内的环境机械振动中收集能量。在这项技术的帮助下,有可能提供可再生和可持续的能源,尤其是在噪声污染很高的城市环境中。压电能量收割机背后的基本概念是通过利用压电的材料将机械能(例如声波)转换为电能。当您施加压力(例如声波产生的振动)时,将产生电荷。该电荷可以被捕获并用于电动设备。最近的研究已研究了使用压电传感器从声波收集能量的潜力。这些查询涉及各种元素,例如选择压电材料的选择,能量收割机的构型以及声波的特征,涵盖了频率和振幅。这项研究的目的是微调压电能量收割机的设计以适合特定应用,例如从交通噪声,乐器甚至人体运动中提取能量。本质上,目的是为各种环境优化这些设备。更广泛的目标是建立压电传感器,作为从声波中收集能量的可靠方法,提供可持续和可再生能源。这具有巨大的希望,尤其是在有一个
摘要 - 太阳能压电混合电动充电系统集成了太阳能和压电技术,以创建一种高效,可持续的解决方案,用于为电动汽车和便携式设备充电。该系统通过光伏面板利用太阳能,将阳光转化为电能,同时通过振动或通过压电材料捕获压力。双能源提高了充电过程的整体效率,即使在可变的环境条件下,也可以确保稳定的电源。该设计具有智能能源管理系统,可优化收获能源的分布,在阳光峰值期间优先考虑太阳能,并在较低的太阳能可用性期间利用压电能量。实验结果表明,这种混合方法可大大降低对电网功率的依赖,降低充电成本并促进环保实践。该系统的实施有可能提高电荷基础设施的可访问性,尤其是在偏远或欠发达的地区。此摘要概述了可再生能源技术的创新整合,旨在推动电动流动生态系统,同时促进可持续的未来。
铅锆钛酸盐(PZT)是一种广泛用于微电动机电(MEMS)技术的压电材料,主要是由于其强烈的压电和机电耦合系数[1]。然而,由于PT缓冲液的损失,传统上用于生长PZT薄膜[2],因此其在光子综合电路(图片)中的应用受到限制。通过化学溶液沉积(CSD)方法[3],具有透明缓冲层(LA 2 O 2 CO 3)生长的PZT膜[3],并通过Pockel的调节证明了其在光子应用中的潜力[4]。但是,在这种方法中使用的薄缓冲层的自旋涂层需要平面样品表面,从而限制了其范围。微转移打印(µ tp)可能是绕过这种瓶颈的一种方法[5]。在本文中,我们报告了悬挂的长度高达4 mm的悬挂式PZT优惠券,宽度高达120 µm。然后,我们成功传输了SI基板上的PZT优惠券。这些结果证明了一种可以使PZT膜在芯片的所需位置中稳定的,而完整芯片均匀地平面化的技术。此外,此方法可以为各种光子学应用程序设计MEMS执行器提供额外的自由。
摘要。材料科学领域已经取得了重大进步,导致了多功能智能(感应,测量,驱动和响应技术)材料的出现。这些材料具有独特的特性集,使它们能够检测周围环境中的变化,并通过采用定制的驱动机制做出相应的反应。当前的研究提供了有关多功能智能材料的设计,合成和表征的完整阐述,并特别关注其在感应和驱动方面的应用。设计过程包括在复合基质内进行的细致识别和掺入各种功能组件,包括压电材料,形状的记忆合金,电活性聚合物和纳米材料。这些成分的选择是基于它们独特的物理和化学特征,这使它们能够检测外部刺激并展示反应行为。在统一材料框架内的各种成分的融合会产生协同的结果,从而增加了智能材料的整体功能。该研究还探讨了多功能智能材料的许多用途,包括结构性健康监测和生物设备等领域。这些材料检测温度,应变,压力和其他环境因素的变化以及其驱动能力的能力,在几个学科中提出了新的进步机会。
本报告涵盖了 WPI0 内的活动,该活动的目的是审查现代陶瓷材料的电气强度测试。描述了开展这项工作的背景以及所采用的实验方法。使用氧化铝基板产品和两种 PZT 压电材料,研究了与样品的几何形状和生产方法相关的各种因素。使用众所周知的威布尔分布对击穿数据进行统计评估,以确定该方法对电气强度的可用性。得出了以下结论。.厚度在 1.0 到 0.25 毫米之间且电气强度超过 100 kV/mm 的薄平面试件可以在变压器油中测试时进行电极化和测试,而不会出现边缘跟踪或闪络问题;.可以使用足够的试件系统地解决电气强度的差异,并且已经获得的示例表明电极面积效应、厚度效应和加工/退火效应;.无需对试件进行压痕以防止边缘闪络;在薄试件上产生小凹痕并非易事,需要专门的精密设备; .从名义上相同的样品的测试结果发现,其电气强度存在差异,可以用双参数威布尔分布来表示; .薄蒸发电极的质量必须使得击穿位置
脚步发电是一种可再生能源,利用人类脚步的力量来发电。它的工作原理是将人们行走或跑步时产生的动能转化为电能,用于为各种设备和电器供电。该技术通常由安装在人流量大的区域(如商场、火车站或机场)的特殊地砖或垫子组成。当人们踩到地砖上时,会压下压电材料,从而产生电压,这些电压可以被收集并储存在电池中或立即使用。脚步发电有几个优点。它是一种清洁的可再生能源,不会产生有害排放或废物。它还可以安装在其他形式的可再生能源可能不可行的地方,例如空间有限的城市地区。此外,它还可以通过鼓励人们走路或跑步来促进身体活动和健康。此外,它还可以帮助降低能源成本,并在偏远或离网地区提供可靠的电力来源。然而,脚步发电也有一些局限性。产生的电能通常较低,可能不适合为高能耗设备或电器供电。它还依赖于人类活动,在人流量较少的时段可能无法持续产生电能。尽管如此,它仍然是一项很有前途的技术,未来有被广泛采用的潜力。