摘要由于其弱特性而将使用硅橡胶作为植入物的使用受到限制。在这项研究中,研究了各种增强剂的影响,例如TIO 2或SIO 2纳米颗粒,碳或聚丙烯纤维微增强对机械,热和粘弹性橡胶复合物具有RTV-4125 Matrix的机械,热和粘弹性特性的影响。通过多项测试评估复合材料,包括拉伸,压缩,FTIR,TGA,DMTA和水吸附测试。发现复合材料的拉伸强度和压缩应力通过添加增强剂增加,对SIO 2观察到的拉伸强度产生了最显着的影响,并且在观察到的0.5菌株的压缩应力上,对聚丙烯纤维的压缩应力产生了最明显的影响。此外,随着加固的添加,基质的吸水量增加,二氧化钛纳米颗粒的增加最高。TGA分析表明,所有复合材料的热稳定性都比普通基质高,并且SR-C纤维复合材料的降解温度最高,而SR-TIO 2观察到的最高降解速率。此外,DMTA分析表明,TIO 2纳米颗粒大大降低了基质的玻璃过渡温度(%28.5),而其他增强件对此温度的影响可忽略不计。引入钢筋对机械,热和粘弹性
应力类型:只有两种基本应力:(1)正应力和(2)剪应力。其他应力要么与这些基本应力相似,要么是这些应力的组合,例如弯曲应力是拉伸应力、压缩应力和剪应力的组合。扭转应力,如轴扭转时遇到的,是一种剪应力。让我们在以下部分中定义正应力和剪应力。
摘要在本文中,研究了晶格结构的扭转和压缩行为。PLA(聚乳酸)材料用于组装中,并通过增材制造方法产生。在实验研究中,通过数字图像相关系统(DIC)系统研究了结构和晶格行为。使用三个不同的单元电池模型创建的模型,作为trunch八浓度,trunch八光线,带有节点的身体对角线以及两个不同的,70 mm和140毫米,总长度大小。通过压缩和扭转实验研究了单位细胞模型的影响,细胞大小对结构的强度进行了研究。获得了最大压缩应力和最大扭转,并提出了其变形。由于细胞模型的结构与扭转兼容,因此在带有节点细胞模型的身体对角线和140 mM的身体对角线中确定了最高最大扭矩。在Trunch Octa Light细胞模型和140 mM细胞长度中确定最高的压缩应力。
应力类型:仅存在两种基本应力:(1)法向应力和(2)剪应力。其他应力要么与这些基本应力相似,要么是这些应力的组合,例如弯曲应力是拉伸应力、压缩应力和剪应力的组合。扭转应力,如轴扭转时遇到的,是一种剪应力。让我们在以下部分中定义法向应力和剪应力。
叶弹簧是由矩形金属板制成的弹簧类型,也称为叶子。矩形金属板通常被螺栓固定和夹紧,并且在重型车辆中有主要用途。以下是不同类型的叶弹簧及其应用。这些主要用于汽车。叶弹簧中产生的主要应力是拉伸和压缩应力。
上下文。薄膜和涂层广泛应用于各种技术应用,如微电子、封装或光学。它们在沉积过程中通常会产生高残余应力,有时压缩应力约为几 GPa。如此大的压缩应力可能导致屈曲结构的成核和生长,这通常会导致最初赋予此类薄膜/基材复合材料的功能特性的丧失。因此,我们研究的目的是通过确定相关参数来防止、限制或控制屈曲现象的发生,从而更好地理解屈曲现象。过去,我们的研究主要集中于基材的弹性和塑性的影响、特定起泡结构作为所考虑薄膜机械性能的函数的观察、施加在起泡结构上的外部压力问题、弹性理论框架在观察到塑性褶皱时理解屈曲的局限性、二维材料(如石墨烯)的起泡结构由于其最终厚度而存在争议等。我们现在想将注意力集中在薄膜/基材的粘附性能上,这控制着界面裂纹的扩展,并最终控制起泡结构的生长。最近的实验观察突出了在固定机械应力/载荷下起泡的增长,表明粘附性随时间发生显著变化。例如,图 1 显示了一个圆形水泡(Si 晶片上厚度为 60 nm 的 Au),其中有无数连续的塑性褶皱,这是其生长动力学的标志。
随着可拉伸器件的发展,在软基底上具有刚性薄膜的工程部件越来越多。我们提出分析在双轴压缩应力状态下软基底上薄膜的屈曲脱层。该问题已通过欧拉柱屈曲分析进行了研究。本文介绍了在软基底上进行的实验,结果表明在某些情况下,“墨西哥帽”形状更能近似地表示屈曲形状。使用通过内聚相互作用粘合到弹性介质的非线性板的模型来描述脱层过程。结果表明,“墨西哥帽”形状改变了软基底的裂纹扩展行为。由 AIP Publishing 出版。[ http://dx.doi.org/10.1063/1.4979614 ]
用于倒装芯片和板载BGA的创新型底部填充膜和浆料 先进电子封装保护 AI Technology的底部填充材料采用分子结构设计,具有无与伦比的能力,可为芯片和元件焊接互连提供压缩应力,同时在热循环和操作过程中吸收平面剪切应力。设计的分子结构不仅具有高Tg,而且还具有出色的防潮性能和低吸湿性,可实现MSL 1级元件级可靠性。这些功能是通过非常规聚合物工程和设计实现的。AI Technology先进的微电子保护产品已在军用和先进商用设备上证明了其性能。创新的底部填充解决方案:
天然/合成混合增强聚合物复合材料具有显著的特性,而且大多数由这些材料制成的部件都会受到循环载荷,因此在结构应用中,其应用的市场份额正在迅速增长。它们的疲劳性能受到了广泛关注,因为由于纤维之间的协同作用,预测它们的行为是一项挑战。这项研究的目的是表征六层凯夫拉纤维与一层编织洋麻增强环氧树脂混合而成的拉伸、压缩和拉伸-压缩疲劳行为,重量分数为 35%。进行了疲劳试验,并以 60%、70%、80% 和 90% 的极限压缩应力进行循环加载。结果完整描述了拉伸和压缩性能,可用于预测疲劳引起的失效机制。