金属单核化杂质中的厚度和扭曲角度依赖性层间激素wenkaiZheng§,⊥,⊥,lixiang§,⊥,⊥,felipe dequesada˧,£,£,Mathias Augustinǂ,Mathias Augustinǂ,ƪ,金属单核化杂质中的厚度和扭曲角度依赖性层间激素wenkaiZheng§,⊥,⊥,lixiang§,⊥,⊥,felipe dequesada˧,£,£,Mathias Augustinǂ,Mathias Augustinǂ,ƪ,
表明大脑解剖结构可能会影响 NIBS 反应。例如,最近的一项研究表明,左侧 DLPFC 的灰质体积可能与 tDCS 的抗抑郁作用有关。在使用 rTMS 的研究中也发现了类似的结果(Manes 等人,2001 年;Jorge 等人,2008 年)。此外,一项研究调查了健康受试者右前额叶半球皮质厚度与 tDCS 决策表现之间的关联(Filmer 等人,2019 年),目标区域的皮质厚度几乎占受试者认知表现差异的 35%。总之,我们的研究结果进一步证明,NIBS 功效的差异可能是由解剖学个体差异来解释的。
ph: +82-041-925-1389电子邮件:yuseon.heo@samsung.com摘要移动设备有限的热预算几乎不允许全速使用高性能应用程序(AP)。但是,由于人工智能技术已迅速应用于移动设备,因此高速和大容量信号处理等需求正在不断增加。因此,控制AP芯片的热量生成成为关键因素,并且有必要开发基于重分配层(RDL)的风扇外套件(FOPKG)结构,该结构不会增加包装的厚度,同时最大程度地提高耗散量的厚度。CU柱的高度在产生可能施加厚的Fopkg的高度正在越来越高,并且在这项研究中,开发了世界上最厚的光孔材料(> 350UM厚度),以生产Cu Post(> 300UM厚度)。研究了光震鼠的光透射率的影响以及根据主聚合物的分子结构的溶解度的影响,以进行厚光构师的光刻过程。基于对这种厚的光质危行为的理解,开发了最佳的液体类型的光蛋白天抗事组成。通过光刻评估基于厚的光片特性,通过实施和CU电镀板进行深孔,以在AP产品设计施加的晶片中获得CPK 1.27的产率。关键字风扇外包装,厚度厚度光抗光毒师,Cu Post取决于对厚光构师的深入理解和实验,可以建立高级研究基础,以增加光孔厚度和更精细的CU后俯仰,以确保散热特征并提高建筑的自由度。
摘要 - 单个分子中的Seebeck系数取决于费米水平的电荷载体的传输概率的斜率,这可能会导致高塞贝克系数。但是,由于单分子只能为热电应用产生有限的功率。因此,必须开发较大规模的系统,以便为实际应用提供足够的功率。在这项工作中,我们检查了维数对分子/Au纳米颗粒2D阵列的塞贝克系数的影响,该阵列在网络系统内具有大量分子连接。此方法随着系统尺寸尺度而增加组件之间的复杂性和相互作用。在这项工作中,我们观察到,与具有相同分子接头的单层结构相比,2D混合阵列的多层结构可提供更高的seebeck系数。尤其是,含油胺(OAM)和硫醇的蒽醌衍生物(5AQ5)用作结构中金纳米颗粒之间的分子交流器。实验结果表明,OAM/AU 2D阵列的四层结构可在单层结构(s = 3.36 µV/K)的Seebeck系数(s = 38.21 µV/K)方面提高约11倍,这在电导率的改善中可以提高6335次的电力系数。另一组结果表明,基于蒽醌的依子基桥(5AQ5)/AU 2D阵列的三层结构可在Seebeck系数(S = -3254 µV/K)上提高约26倍(S = -3254 µV/K),而单层结构(S = -127 µV/K)和A 177 Quelt time and 177 Quilties and 177。这些发现表明,可以通过控制层数来改善工程纳米结构的热电性能。
摘要:二硫化钼(MoS 2 )因其较大的带隙、良好的机械韧性和稳定的物理性能而受到研究者的广泛关注,成为下一代光电器件的理想材料。但较大的肖特基势垒高度( Φ B )和接触电阻是阻碍大功率 MoS 2 晶体管制备的障碍。详细研究了具有两种不同接触结构的 MoS 2 晶体管的电子传输特性,包括铜(Cu)金属-MoS 2 通道和铜(Cu)金属-TiO 2 -MoS 2 通道。通过调整金属和 MoS 2 之间的 TiO 2 夹层的厚度来优化接触。具有 1.5 nm 厚 TiO 2 层的金属-夹层-半导体(MIS)结构具有较小的肖特基势垒,为 22 meV。结果为设计 MIS 接触和界面以改善晶体管特性提供了参考。
摘要:为研究 Ni 与 GaAs 衬底之间的固相反应,利用磁控溅射技术在 GaAs 衬底上生长不同厚度的 Ni 薄膜,并进行原位 X 射线衍射 (XRD) 退火。利用原位和非原位 XRD、极图和原子探针层析成像 (APT) 研究了厚度对金属间化合物形成的影响。结果表明,20 nm 厚的 Ni 薄膜与 GaAs 衬底呈现外延关系,沉积后为 (001) Ni//(001) GaAs 和 [111] Ni//[110] GaAs。增加薄膜厚度会导致 Ni 薄膜织构的变化。这种差异对 Ni 3 GaAs 的形成温度有影响。该温度随着厚度的增加而降低。这是由于初始 Ni/GaAs 界面的相干/非相干性质所致。Ni 3 GaAs 相在约 400 ◦ C 时分解为二元和三元化合物 xNiAs 和 Ni 3 − x GaAs 1 − x。与 Ni 3 GaAs 类似,第二相的分解温度也取决于 Ni 层的初始厚度。
考虑到两种材料都需要电桥,焊料和基板之间的电子连接技术变得非常重要。然而,使用含铅的传统焊料已不再被允许,因此正在开发无铅焊接的研究。这项研究旨在研究回流温度对 Sn-58Bi 焊接接头金属间化合物 (IMC) 厚度的影响。选择 Sn-58Bi 焊料和铜板之间的界面反应偶。回流温度设置为高于 Sn-58Bi 焊料熔点温度 61°C、71°C、81°C 和 91°C。高于焊料熔点温度的持续时间设置为 30 分钟。扫描电子显微镜 (SEM) 和能量色散 X 射线光谱 (EDS) 用于研究界面形态和分析局部成分。此外,还进行了 X 射线衍射 (XRD) 测量以确保对 IMC 进行相位识别。需要进行统计分析来比较 Sn-58Bi/Cu 反应对之间 IMC 厚度增长的差异。结果显示在基材-焊料界面处形成了 Cu 6 Sn 5 和 Cu 3 Sn 的 IMC 层。IMC 层厚度随温度而增加。
gan/gainn非对称多量子发光二极管具有不同潜在的屏障厚度(5和15 nm),通过使用金属有机化学蒸气沉积来生长。狭窄的屏障结构改善了设备的性能,包括电致发光积分强度的超线性增加,高电流密度下效率下降的降低,波长漂移的降低,向前电压的降低以及壁插头效率的提高。这是由于量子屏障的厚度变窄,这会导致量子井之间的电场较小,量子限制性鲜明效应的弱化,跨设备活动区域的载体分布更均匀,以及电子泄漏的抑制。
目的:伽马同步是大脑皮层的一个基本功能特性,在多种神经精神疾病(如精神分裂症、阿尔茨海默病、中风等)中会受损。伽马范围内的听觉刺激可以驱动整个皮质层的伽马同步,并评估维持它的机制的效率。由于伽马同步在很大程度上取决于小清蛋白阳性中间神经元和锥体神经元之间的相互作用,我们假设皮质厚度和伽马同步之间存在关联。为了验证这一假设,我们采用了脑磁图 (MEG) - 磁共振成像 (MRI) 联合研究。方法:根据解剖 MRI 扫描估计皮质厚度。与 40 Hz 调幅音调曝光相关的 MEG 测量值被投射到皮质表面。我们考虑了两种皮质同步性测量方法:(a)40 Hz 下的试验间相位一致性,提供伽马同步的顶点估计值;(b)初级听觉皮质与整个皮质套层之间的相位锁定值,提供长距离皮质同步性的测量。然后计算了 72 次 MRI-MEG 扫描的皮质厚度与同步性测量结果之间的相关性。结果:试验间相位一致性和相位锁定值均与皮质厚度呈显著的正相关。对于试验间相位一致性,在颞叶和额叶发现了强关联的簇,尤其是在双侧听觉皮质和运动前皮质中。相位锁定值越高,额叶、颞叶、枕叶和顶叶的皮质厚度就越厚。讨论和结论:在健康受试者中,较厚的皮质对应于初级听觉皮质及其他部位的较高伽马同步和连接性,这可能反映了参与伽马回路的潜在细胞密度。这一结果暗示伽马同步与潜在大脑结构一起参与了高级认知功能的大脑区域。这项研究有助于理解固有的皮质功能和大脑结构特性,这反过来可能构成定义伽马同步异常患者的有用生物标志物的基础。
A.Bellakhdar a,b,* , A.Telia ba LMSF 半导体和功能材料实验室,Amar Telidji Laghouat 大学,阿尔及利亚 b Laboratoire des Microsystèmes et Instrumentation LMI, Département d'Electronique, Faculté de Technologie, Université des Frères Mentouri, 2 Campus Ahmed Hamani, Ain El Bey, Constantine, Algeria In本研究提出了具有不同 GaN 盖层厚度和重 n 掺杂 GaN 盖层的 GaN/AlInN/GaN 高电子迁移率晶体管 (HEMT)。为了研究 GaN 覆盖层对 (GaN/AlInN/GaN) 异质结构性能的影响,通过求解一维 (1 D) 泊松方程,提出了一种简单的 GaN/AlInN/GaN 高电子迁移率晶体管 (HEMT) 阈值电压分析模型,从而找到了二维电子气 (2DEG) 与控制电压之间的关系。分析中考虑了 AlInN/GaN 和 GaN/AlInN 界面处的自发极化和压电极化。我们的模拟表明,GaN 覆盖层降低了二维电子气 (2DEG) 的面密度,从而导致漏极电流减小,并且 n+ 掺杂的 GaN 覆盖层比未掺杂的 GaN 覆盖层具有更高的面密度。 (2021 年 11 月 28 日收到;2022 年 2 月 19 日接受)关键词:GaN 帽、GaN/AlInN/GaN HEMT、2DEG、2DHG、自发极化、压电极化