在捕获原子钟中,退相干的主要来源通常是振荡器的相位噪声。在这种情况下,我们通过组合多个原子集合来获得理论上的性能提升。例如,可以将 M 个 N 原子集合与各种探测周期组合,以将频率方差降低到标准拉姆齐时钟的 M 2 − M 倍。如果某些集合的原子相位以降低的频率演变,则可能出现类似的指数级改进。这些集合可以由具有较低频率跃迁的原子或分子构成,或由动态解耦生成。具有降低频率或探测周期的集合仅负责计数 2 π 相位包裹的整数,并且不影响时钟的系统误差。具有高斯初始状态的量子相位测量允许比拉姆齐光谱更小的集合大小。
位点(六边形 h 或准立方 k)。Si(0) 表示不与 NC 原子相邻的 Si 原子数;而 Si(1) 和 Si(2) 分别表示与一个和两个 NC 原子相邻的 Si 原子数。
碳氮比 (C/N) 除少数例外,氮原子数不应超过有机叠氮化物中的碳原子数。尽管可以少量合成一些 C/N 比在 1 和 3 之间的叠氮化物,但应尽快使用或淬灭叠氮化物。叠氮化物应储存在 -18 °C 且避光的环境中(最好放在塑料琥珀色容器中)。浓度不应超过 1 M。六规则评估有机叠氮化物稳定性的另一种方法是“六规则”,该规则规定每个能量官能团的碳原子数不应少于六个。每个能量官能团(叠氮化物、重氮、硝基等)六个碳原子(或其他大小大致相同的原子)可提供足够的稀释度,使化合物相对安全。每个官能团的碳原子数少于六个可能导致材料具有爆炸性。
在这项研究中,使用Geant4 Monte Carlo模拟工具,我们研究了氧化铝,氟化镁,氟化铝,氟化铝,二氧化钛,二吡啶镁,镁镁,硅酸镁,二氧化钙,二氧化钙和液态的燃料范围,并在0.015至10 c. 10 c. 10 c.10 c. 10 c. 10 c.10 c.10 c.10 c.10 c上。在这篇综述中,我们已经计算并分析了线性衰减系数(LAC)和质量衰减系数(MAC),半价值层(HVL),第十值层(TVL),平均自由路径(MFP),有效的原子数,有效的原子密度,有效的电子密度,等效原子原子数和构建量和构建因素和构建因素和构建因素。在工作的延续中,我们已经比较了Geant4 Monte Carlo Simulation Tool的质量衰减系数的计算结果与其他人的实验结果,并通过Xmudat代码的仿真数据进行了比较,并且它们的相对误差非常低,并且彼此吻合非常吻合。最后,以适当的数字显示了所选材料获得的结果。
空间环境的空间环境对太空行程包含主要危害,其中包括空间辐射和微型度量,如图1所示。空间辐射主要由电子和质子,太阳颗粒事件(SPE)和银河宇宙辐射(GCR)组成。SPE是来自太阳的高能电荷颗粒的数量很高(每单位时间)的事件。它们可以源自太阳浮动部位置或与冠状质量弹出相关的冲击波。GCR由高能电荷颗粒组成,该颗粒源自大型恒星的超新星和活性银河核。它从各个方向击中月球,火星,小行星和航天器,并且总是以背景辐射为单位。GCR是由核(完全离子化原子)的原始构成的,以及来自电子和正面的较小贡献(约2%)。1具有高原子数(z> 10)和高能量(E> 100 GEV)的GCR颗粒的小但很重要的成分。1这些高原子数,高能量(HZE)离子颗粒仅占总GCR含量的1-2%,但它们与非常高的特种离子化相互作用,因此贡献了约50%的长期空间辐射剂量的长期辐射剂量。2这些GCR颗粒,
基于光学材料的剂量法已广泛使用。从灵敏度的角度来看,使用储存磷剂是有利的。(1)热发光(TL)(2,3)和光刺激的发光(OSL)(4-7)已用于个人剂量计和辐射成像。此外,定义为通过电离辐射产生的辐射中心的光致发光的放射性光致发光(RPL)已用于个人剂量测定和荧光轨道检测。(8,9)以实现进一步的灵敏度(10-16)或将适用性扩展到热中子,(17-24)已经进行了大量研究和发表。通常,可用于剂量测定法的储存磷酸盐由无机晶体或包含相对较高原子数元件的玻璃组成。在医学剂量法中,对于癌症的放射疗法,剂量计需要组织等效性。组织等效性是电离辐射能量与生物组织的吸收特征的等效性。为了达到组织等效性,可以使用有限数量的元素(通常原子数为3-9)。这在基于无机化合物的材料设计中施加了严重的限制。实现组织等效的有效方法是使用有机材料或软物质。到目前为止,已经开发了基于凝胶(25)或聚合物(26-31)的放射性剂量计。另外,有机
在量子混沌系统中,光谱形式(SFF)定义为两级光谱相关函数的傅立叶变换,已知遵循随机矩阵理论(RMT),即“坡道”,其次是“坡道”,其次是“高原”。最近,与所谓的“ bump”相距的通用早期偏差被证明是在随机量子电路中作为多体量子系统的玩具模型存在的。我们证明了SFF中的“凹凸障碍 - 高原”行为,用于许多范式和频道驱动的1D冷原子模型:无旋转和Spin-1/2 Bose-Hubbard模型,以及与触点或二色相互作用的不可融合的Spin-1凝结物。我们发现,与晶格大小相比,多体时间的缩放量 - rmt的发作和凸起振幅的变化对原子数的变化更为敏感,而不管超级结构,对称性类别,或者选择驱动方案的选择如何。此外,与1D光学晶格中相互作用的玻色子相比,在旋转气体中,原子数中的缩放和凸起幅度的增加的速度明显慢,这表明了位置的作用。我们获得了SFF的通用缩放函数,该功能暗示了量子混乱的冷原子系统中凸起政权的幂律行为,并提出了一种干涉测量方案。
原子α活性原子数背景辐射链链反应污染计数计数速率电子功能融合Gamma Geiger-müller管半衰期的电离辐射辐照辐射同位素同位素质量质量净下降中子净下降中子poder poder podon Proton Proton Proton Proton Protiation Periation Periation Periatiation Periatiation Periation j辐射剂量剂量剂量剂量放射性型衰减型衰减decantane decantane paractanes div