项目区域总土地面积约为 93,420 公顷。项目布局最终确定后,保守估计项目需要扰动项目区域内约 3,158 公顷土地,占项目总面积的不到 3.5%。由于项目区域内有大量已清理和/或已扰动的农业用地(约 25,750 公顷,占项目面积的 25% 以上),因此风力发电机和辅助基础设施优先位于这些区域,以尽量减少对原生植被的清理。因此,扰动区域包括约 155 公顷已扰动的非原生植被,几乎不需要清理原生植被。
• 微软四季度表示Azure收入的6%来自AI贡献,季度收入达10亿美金,实现了过去连续三个季度的翻倍增长; • ServiceNow四季度剩余履约义务cRPO +23%高于业绩会指引2pct,一半是由净新年度合同ACV驱动,其中主要因为客户AI兴趣浓厚; • Palantir表示AI拉动商业客户增长新周期,四季度商业收入同比+32%,远高于22年+15%的增长,尤其美国区商业收入同比增 长+70% ; • Crowdstrike四季度年度ARR同比+34%至34.4亿美元,净新增ARR增长快速,预计2028年AI原生安全平台TAM 2250亿美元;
过去 50 年来,数字技术发展迅速,研究人员才刚刚开始看到它们对不同世代的影响。一些专家认为,技术的广泛使用对青年人产生了深远的影响。例如,教育家兼研究员马克·普伦斯基 (Marc Prensky) 创造的“数字原生代”一词描述了年轻一代(当时称为千禧一代)“与他们的前辈有着根本不同的思考和处理信息的方式”,指的是他们是互联网数字语言的“母语人士”(Prensky,2001 年)。尽管这一概念后来已被瓦解,由于经验证据有限,但“数字原生代”一词仍在流传,并影响了政策制定者和其他利益相关者对青年、技术和教育的态度(Eynon,2020 年)。
英特尔可扩展 IOV 是一种可扩展且灵活的硬件辅助 I/O 虚拟化方法,它以现有的 PCI Express 功能为基础,使其能够轻松得到兼容 PCI Express 端点设备设计和软件生态系统 3 的支持。英特尔可扩展 IOV 定义了一种方法,可以以精细的粒度将大量多路复用设备接口分配给隔离域。该架构将设备共享的粒度定义为可分配设备接口 (ADI)。设备功能上的所有 ADI 都使用与设备的 PCIe 功能相对应的相同 PCIe 请求者 ID(总线/设备/功能编号)。进程地址空间标识符 (PASID) 用于区分为不同 ADI 执行的上游内存事务并传达事务所针对的地址空间。
视觉引导的上肢运动的自主控制涉及大脑皮层多个区域的神经元活动。然而,使用尖峰记录作为输入的脑机接口 (BCI) 研究主要关注直接控制 BCI 的神经元(我们称之为 BCI 单元)被记录的区域的活动。我们假设,就像手臂和手的自主控制涉及多个皮质区域的活动一样,BCI 的自主控制也涉及多个皮质区域的活动。在两名受试者 41(猕猴)中,他们分别使用手持操纵杆和由 4 个初级运动皮层(M1)BCI 单元直接控制的 BCI 执行中心向外任务,我们记录了 M1、背侧和腹侧运动前皮层、初级体感皮层、背侧后顶叶皮层和 44 前顶内区中其他非 BCI 单元的活动。在大多数这些区域中,在操纵杆和 BCI 试验中,非 BCI 单元以相似的百分比和 45 相似的调制深度活跃。BCI 和非 BCI 单元都显示出 46 在偏好方向上的变化。此外,在两个任务中,BCI 和非 47 BCI 单元之间的有效连接的流行率相似。与操纵杆试验相比,BCI 表现较好的受试者在 BCI 期间显示 48 调制非 BCI 单元的百分比增加,调制深度增加,有效连接增加;在 BCI 表现较差的受试者中未发现这种增加。在自愿闭环控制期间,给定皮质区域中的非 BCI 单元可能发挥类似的功能,无论效应器是原生上肢还是 BCI 控制的设备。
事实证明,二维层状材料的氧化有利于形成氧化物/二维材料异质结构,这为低功耗电子设备的新范式打开了大门。硫化镓(II)(𝜷-GaS)是一种六方相 III 族单硫属化物,是一种宽带隙半导体,单层和少层形式的带隙超过 3 eV。其氧化物氧化镓(Ga 2 O 3)兼具大带隙(4.4-5.3 eV)和高介电常数(≈ 10)。尽管这两种材料都具有技术潜力,但原子级厚度的𝜷-GaS 的受控氧化仍未得到充分探索。本研究重点关注使用氧等离子体处理对𝜷-GaS 进行受控氧化,以解决现有研究中的重大空白。结果表明,在暴露于 10 W 的 O 2 时,能够形成厚度为 4 nm 的超薄天然氧化物 (GaS x O y ),从而形成 GaS x O y /GaS 异质结构,其下方的 GaS 层保持完整。通过将此类结构集成在金属电极之间并施加电压斜坡或脉冲等电应力,研究了它们在电阻式随机存取存储器 (ReRAM) 中的应用。所产生的氧化物的超薄特性可实现低操作功率,能耗低至每次操作 0.22 nJ,同时分别保持 350 次循环和 10 4 s 的耐久性和保持力。这些结果表明基于氧化的 GaS x O y /GaS 异质结构在电子应用,特别是低功耗存储设备中具有巨大的潜力。
从无DNA编辑的葡萄藤原生质体中的植物再生Simone scintilla 1*,Umberto salvagnin 1,Lisa Giacomelli 2,Tieme Zeilmaker 2,Mickael A. Mickael A. Malnoy A. Malnoy 1,Jeroen Rouppe Van der Voort 2,Claudio Moser 1。1果实作物,研究与创新中心的基因组学和生物学系,E. Mach 1,I-38010,San Michele A/Adige(TN)意大利; 2 Enza Zaden,Haling 1-E,1602 dB,Enkhuizen,荷兰。*通讯作者:Simone Scintilla博士(Simone.scintilla@unitn.it)。抽象的CRISPR-CAS技术已广泛扩展了植物育种中基因组编辑的应用领域,从而使遗传库中可能的特定和最小突变。关于标准基因组编辑技术,可以以核糖核蛋白(RNP)的形式引入CRISPR-CAS机械,从而避免将外源性DNA引入细胞中。对将无DNA递送到植物细胞中应用中的兴趣不断增加,尤其是在有价值的木本植物精英品种的情况下,CRISPR-CAS9技术将保留其基因型,同时仍导致靶向遗传修饰。通过确保CRISPR-CAS DNA-RNP作为RNP的无效递送,并且由于单个编辑的单元将不存在嵌合体,因此,使用CRISPR-CAS DNA-无需递送,非常适合新育种技术的需求。然而,通常通过低编辑效率和不成功的再生过程来阻碍木质植物中原生质体的细胞培养。深红色的L.胚胎愈伤组织。此策略符合无DNA策略要求。我们在这里描述了一种成功的无DNA方法,以获得完全编辑的葡萄植物,该方法是从V. vinifera cv获得的原生质体中再生的。在浓霉敏感性基因VVDMR6-2上编辑了转染的原生质体。再生的编辑植物表现出1bp或2bp的纯合缺失,以及1BP的纯合插入。引言基因组编辑技术允许以高度精确度修改细胞DNA。尤其是随着CRISPR-CAS9的出现(群集定期间隔短的短质重复 - CAS9)技术,基因组编辑的应用领域已被广泛扩展。该系统基于通过互补的RNA序列和CAS核酸酶介导的DNA双链破裂对DNA编辑位点的识别,这使得插入,缺失,甚至仅仅使一个核苷酸的修饰成为可能。因此,尤其是在木质植物遗传改善的情况下(例如葡萄藤或苹果)精英品种,CRISPR-CAS9技术可确保其基因型保存,同时导致靶向遗传修饰。CRISPR-CAS成分可以以核酸的形式引入细胞内(即DNA/mRNA编码整个系统),或以核糖核蛋白(RNP)复合物的形式进行编码。虽然DNA可以整合到基因组中,而mRNA受其内在不稳定性的影响,但RNP的直接细胞递送打开了有吸引力的场景,因为它有可能体现出强大的方法论,导致特定而最小的突变,而没有外源性DNA的痕迹(Woo等,2015)。从这种角度来看,与经典的转基因生物相比,对植物的应用兴趣可能会更好地接受消费者(Saleh等,2021)。到目前为止,已经提出了三种主要策略将CRISPR-CAS系统输送到植物细胞中。1)使用工程化的农杆菌,可以轻松克服植物细胞壁。然而,该策略采用外源质粒DNA,这些DNA含有农杆菌的DNA部分,在转化后,该策略在细胞DNA中积分为细胞DNA。对于木本植物,外源性DNA只能通过杂交去除,从而导致遗传背景的变化。成功地应用于包括木本植物在内的许多农作物的替代方法,包括T-DNA的分子切除(Dalla Costa等,2020),几乎完全去除外源性DNA。但是,剩余的最小残留外国DNA可能与许多国家的当前严格转基因生物法规不相容。2)粒子轰击使用装有生物材料的纳米颗粒子弹来射击植物组织,从而超过了细胞壁垒,并释放了纳米颗粒装载的生物货物以诱导基因组编辑。尽管如此,各种物理参数严重影响了这种方法的效率。,并非所有细胞都会被子弹击中,因此下游再生过程可能会引起嵌合植物。3)替代解决方案是暂时清除细胞壁,有效地将生物材料递送到单个细胞中。根据此策略,细胞壁是酶法消化的,因此提供了一个“裸”植物细胞(即原生质体)由质膜界定。在有利的条件下,可以通过PEG浸润,电穿孔或LiPofection轻松实现RNP的细胞递送。2-3天后,恢复了细胞壁,进一步的细胞划分
云原生技术和原则是将称为云原生网络功能 (CNF) 的网络工作负载扩展到大型云规模的好方法。这项技术正在迅速取代基于虚拟化技术的网络功能虚拟化 (NFV) 及其虚拟网络功能 (VNF)。NFV 难以扩展、升级缓慢、重启缓慢。另一方面,云原生使用 Linux 容器,这些容器只是常规进程,对操作系统及其资源的视图有限。CNF 和 VNF 之间的一个主要区别是,使用 CNF,您通常无法控制它所运行的操作系统。您的 CNF 可以与同一系统上的其他 CNF 和进程共存,甚至可以与公共云提供商中的同一核心共存。为了使云原生提供所需的安全性和共存要求,它必须保留 Linux 安全模型,不需要特定的执行模型,也不需要可能不存在或已被其他东西占用的资源。基本上,它总是独立于环境工作。问题在于,当前提供高速原始数据包网络的技术是基于 SR-IOV 和 SIOV 与用户空间驱动程序相结合,而这些技术需要特定的资源和执行模型,而这些资源和模型在公共云系统中通常无法保证。那么问题是,我们如何为不基于 SR-IOV 或 SIOV 与用户空间驱动程序相结合的 CNF 提供高速网络?
*通讯作者:yalin@sinica.edu.tw † 资深作者 C.-SL、Y.-CL、JS 和 M.-CS 构思并设计了实验。C.-TH 和 Y.-HY 进行了 CRISPR-Cas9 实验。C.-TH、Y.-HY、Q.-WC、J.-JY 和 F.-HW 进行了原生质体再生、细胞生物学、分子生物学和靶向诱变实验。SL 进行了 SpCas9 纯化。Y.-LW 进行了 WGS 文库制备和 qPCR 分析。P.-XZ、T.-LW 和 Y.-CL 进行了生物信息学分析。Y.-HC、C.-TH、C.-SL、Q.-WC 和 F.-HW 进行了病毒相关分析。C.-TH 进行了细胞生物学。C.-TH 和 S.-IL 进行了嫁接。 JS、M.-CS、Y.-CL 和 C.-SL 在所有合著者的帮助下撰写了手稿。所有作者都阅读并批准了最终稿件。根据作者须知 (https://academic.oup.com/plphys/pages/General-Instructions ) 中所述的政策,负责分发与本文所述研究结果相关的材料的作者是 Yao-Cheng Lin (yalin@sinica.edu.tw)。