在这项研究中,我们生成并比较了三个针对马铃薯(卵巢结核)制成的胞苷碱基编辑器(CBE),该量子量其最多赋予了原生质体池中所有等位基因的43%C-T转换。早些时候,基因编辑的马铃薯植物是通过聚乙烯二烯介导的CRISPR/CAS9转化原生质体的转化而成功产生的。在一项研究中,通过用内源性马铃薯ST U6启动子替换U6-1启动子的标准拟南芥,从而获得了3 - 4倍的编辑效率。在这里,我们使用了这种优化的构建体(SP Cas9/ st u6-1 :: grna1,Target GRNA序列GGTC 4 C 5 TTGGAGC 12 AAAAAC 17 TGG)用于生成CBES量身定制的马铃薯,并测试了用于C-T碱基编辑的CBES在Granule-Bounchase-bound starch synthase 1 Gene中的C-T碱基编辑。首先,将链球菌CAS9转化为(D10A)Nickase(NCAS9)。接下来,来自人hapobec3a(A3a),大鼠(EVO_RAPOBEC1)(RA1)或Sea Lamprey(EVO_ PM CDA1)(CDA1)的三种胞质脱氨酶之一(cda1)与NCAS9和A尿素 - DNA Glycosylase融合了C-Encas9(CDA1)与每种模块化的链接。CBE的总体高度有效,A3A具有最佳的总体基础编辑活动,平均为34.5%,34.5%和27%的C-T转换为C4,C5和C12,而CDA1的平均基础编辑活动的平均基础编辑活性为34.5%,34%,34.5%,14.25%C4和C4,C4和C4,C4和C4,C4和C4,C4。ra1在C4和C5时表现出平均基础编辑活性为18.75%,19%的基础编辑活动,是唯一在C12时显示C-TO-T转换的基本编辑器。
* 与骁龙 X70 调制解调器-射频系统 1 相比 与非基于 AI 的位置追踪相比;在典型的 GNSS 挑战密集城市峡谷环境下,骁龙是 Qualcomm Technologies, Inc. 及其子公司的产品。
关于土壤中微生物寿命的讨论通常集中在细菌和较小程度的放线菌(一组专业的厌氧菌细菌)上。这部分是由于在土壤中发现的细菌和放线菌的种群通常比所有其他微生物寿命都大,其次是由于对有益细菌的广泛了解可以添加到农作物系统中。经常被排除在讨论之外的是其他微生物,例如真菌,原生动物和线虫,它们在土壤健康中都具有关键作用。虽然在英亩的犁沟中发现的真菌,原生动物和线虫(6英寸深度x 1英亩)被细菌和放线菌在种群中矮小,它们对土壤的微生物生物量比较大的种群贡献更多(表1)。虽然土壤应用的农产品添加真菌,原生动物和线虫很少见,但重要的是要了解这些微生物物种在植物营养和土壤健康中的重要性。
半胱氨酸 (Cys) 和蛋氨酸 (Met) 对陆地 S 循环至关重要,因为它们是植物营养和微生物生长所需的碳 (C)、氮 (N) 和硫 (S) 来源。然而,土壤微生物预计会争夺这些 S-氨基酸中的 C、N 和 S。我们假设,由于植物的 C 输入较低,植物生产力低的土壤中的微生物竞争会更激烈。在这里,我们将 14 C 标记的 Cys 和 Met 添加到从海拔驱动的原始草地生产力梯度收集的 5 种土壤中,然后我们用离心排水程序在 60 分钟内测量微生物吸收,然后用 NaOH 捕集器在 48 小时内测量随后的矿化。我们的结果表明,Cys 和 Met 都被土壤微生物迅速吸收,半衰期从 0.34 到 2.14 分钟不等,比通过测量 14 CO 2 释放确定的半衰期快一个数量级(或更多)。微生物从土壤溶液中去除 14 C 和随后释放 14 CO 2 之间存在相当大的延迟,这表明草原土壤中 Cys 和 Met 的降解主要通过生物过程发生。土壤微生物对 Cys 和 Met 的吸收主要由高亲和力运输系统 (0.01 – 0.1 mM) 控制,而亲和力较低的运输系统在较高底物浓度 (1 – 100 mM) 下变得更为重要。此外,在生产力较低、海拔较高的地区,Cys 和 Met 的微生物吸收和矿化率下降,这表明有机 N 和 S 的周转以及随后植物吸收的有效性可能受土壤肥力控制。我们得出结论,尽管 Cys 和 Met 可能代表土壤中 DON 和 DOS 库的小部分,但由于它们在草原土壤中的快速周转和补充率,它们对土壤微生物和植物营养的重要性可能被低估了。
原生质体再生困难是CRISPR/Cas9基因编辑技术在油菜(Brassica napus L.)研究和育种中有效应用的一大障碍。本研究首次描述了一种快速有效的油菜品种Kumily原生质体分离、再生和转染的方法,及其在基因编辑中的应用。从3-4周龄叶片中分离的原生质体在MI和MII液体培养基中培养以形成细胞壁和细胞分裂,然后在芽诱导培养基和芽再生培养基中继代培养以产生芽。研究了不同基础培养基、植物生长调节剂的类型和组合以及每种培养基上原生质体培养时间与原生质体再生的关系。结果表明,MI培养基中较高浓度的NAA(0.5 mg l −1)和2,4-D(0.5 mg l −1)对原生质体形成细胞壁和维持细胞分裂至关重要,而此后应降低生长素的浓度以形成愈伤组织和诱导芽。对于芽再生,需要相对高浓度的细胞分裂素,在所有测试组合中,2.2 mg l −1 TDZ与生长素0.5 mg l −1 NAA的组合可获得最佳效果,芽再生率高达45%。我们的结果还表明,原生质体在不同培养基上的培养时间至关重要,因为较长的培养时间会显著降低芽再生频率。此外,我们优化了油菜的转染方案。利用该优化方案,我们成功编辑了控制油菜中硫代葡萄糖苷运输的BnGTR基因,且突变频率很高。
摘要根际是植物根直接影响的土壤区域。根际中的微生物群落包括真菌,原生和细菌:所有在植物健康中都起着作用。有益的细菌中西氏细菌在氮含有的豆科植物上感染了根毛。感染会导致根结节的形成,其中Meliloti将大气氮转化为氨(一种可生物利用形式)。在土壤中,经常在生物膜中发现梅洛蒂(S. meliloti),并沿着根部缓慢行进,沿着未感染的根尖生长的根尖端发出根毛。土壤原生生物是根际系统的重要组成部分,能够沿着根和水膜迅速行进,后者捕食土壤细菌,并且已知未消除的吞噬体已知。我们表明,土壤原生物colpoda sp。可以将S. meliloti沿Medicago trunca-tula根传递。使用模型的土壤缩影,我们直接观察到沿截骨根部的流体标记为Meliloti链球菌,并随着时间的推移跟踪了荧光信号的位移。共同接种两周后,当Colpoda sp。也存在与含有细菌但没有生物的治疗方法相比。直接计数还表明,生存细菌需要生存者才能达到我们缩影的更深层。促进细菌运输可能是土壤生物促进植物健康的重要机制。
英特尔可扩展 IOV 是一种可扩展且灵活的硬件辅助 I/O 虚拟化方法,它以现有的 PCI Express 功能为基础,使其能够轻松得到兼容 PCI Express 端点设备设计和软件生态系统 3 的支持。英特尔可扩展 IOV 定义了一种方法,可以以精细的粒度将大量多路复用设备接口分配给隔离域。该架构将设备共享的粒度定义为可分配设备接口 (ADI)。设备功能上的所有 ADI 都使用与设备的 PCIe 功能相对应的相同 PCIe 请求者 ID(总线/设备/功能编号)。进程地址空间标识符 (PASID) 用于区分为不同 ADI 执行的上游内存事务并传达事务所针对的地址空间。
6.1 AI模型选择与调优 ...................................................... 20 6.2 端网协同的AI模型训练 ...................................... 22 6.3 端网协同的AI模型推理 ...................................... 24 6.4 基于数字孪生的AI性能预验证 ...................................... 26 7 总结与展望 ............................................................. 27 缩略语 ......................................................................... 30 作者 ......................................................................... 30 参考文献 ......................................................................... 31
新育种技术(NBT)在Vitis Vinifera中的应用非常需要引入有价值的特征,同时保留了精英品种的基因型。然而,由于外源性DNA的稳定整合,欧洲和其他国家 /地区的公众舆论和法律法规对NBT的广泛应用被公众舆论和法律法规所接受,这会导致可能受到嵌合的转基因植物。一种基于单细胞的方法,再加上CRISPR/CAS编辑机械的无DNA转染,构成了克服这些问题并保持整个生物体中原始遗传化妆的强大工具。我们在这里描述了一种成功的基于单细胞的无DNA无DNA方法,以获取编辑的葡萄植物,并从两个表格葡萄藤品种的胚胎愈伤组织中分离出来的原生质体(V. vinifera cv。深红色无籽和sugraone)。分别将重生的非晶体植物编辑为单个或双突变体,分别在腐烂的和粉状的米尔德易感基因,VVIDMR6和VVIMLO6上。
1 加拿大魁北克省圣安妮贝尔维尤麦吉尔大学寄生虫学研究所 H9X 3V9 2 加拿大魁北克省蒙特利尔麦吉尔大学实验医学部 H4A 3J1 3 法国图尔药学院 Monge 大道 31 号 37200