利什曼病是一种由利什曼原虫属的原生动物寄生虫引起的传染病,目前尚无获批的人类疫苗。感染以物种特异性的方式定位到不同的组织,由杜氏利什曼原虫和婴儿利什曼原虫引起的内脏疾病对人类最为致命。尽管利什曼原虫属寄生虫主要在细胞内,但可以通过给狗接种婴儿利什曼原虫前鞭毛体培养物分泌产物的复杂混合物来预防内脏疾病。由于细胞外寄生虫蛋白可直接与疫苗诱导的宿主抗体接触,因此它们是良好的亚单位疫苗候选物,因此我们在此尝试发现对体外生长和宿主感染至关重要的蛋白质,目的是确定亚单位疫苗候选物。通过对杜氏利什曼原虫基因组进行计算机分析,我们确定了 92 个编码蛋白质的基因,这些蛋白质预测会通过单个跨膜区或 GPI 锚点分泌或外部锚定在寄生虫膜上。通过选择一种同时表达荧光素酶和 Cas9 核酸酶的转基因杜氏利什曼原虫,我们系统地尝试通过 CRISPR 基因组编辑靶向所有 92 个基因,并确定了体外生长所需的四个基因。对于 55 个基因,我们用每种突变寄生虫感染了小鼠群,并通过使用生物发光成像纵向量化寄生虫血症,结果显示 9 个基因有减毒感染的证据,尽管所有基因最终都建立了感染。最后,我们将两个基因表达为全长可溶性重组蛋白,并在小鼠临床前感染模型中将它们作为亚单位疫苗候选物进行测试。这两种蛋白质都对脾脏感染的不受控制的发展产生了显著的保护作用,值得进一步研究作为针对这种致命的热带传染病的亚单位疫苗候选物。
丰富度与更好的编辑活动有关[54,55]。均聚物据报道偶尔会降低SGRNA效率[54-56]。 可以用两种算法之一来计算sgrna裂解预期位点的预测概率的目标分数:(1)Doench等人开发的原始规则集2分数。 cas9 sgrnas [57],并以方位角更新(github.com/microsoftresearch/azimuth);或(2)用于与CAS12A SGRNA一起开发的Cindel分数[53]。 最后,可用的靶向活动评分算法包括HSU等人开发的分数。 [58]和Doench等人开发的切割确定(CFD)得分。 [57]。 两者都是基于选择的SGRNA与目标基因组中所有其他可能的SGRNA之间成对比较的分数,并且使用系数矩阵确定成对得分,该系数矩阵在SGRNA中考虑了不匹配位置,以及在CFD得分的情况下确定了不匹配的身份。 因为两个分数的系数矩阵均来自均聚物据报道偶尔会降低SGRNA效率[54-56]。可以用两种算法之一来计算sgrna裂解预期位点的预测概率的目标分数:(1)Doench等人开发的原始规则集2分数。cas9 sgrnas [57],并以方位角更新(github.com/microsoftresearch/azimuth);或(2)用于与CAS12A SGRNA一起开发的Cindel分数[53]。最后,可用的靶向活动评分算法包括HSU等人开发的分数。[58]和Doench等人开发的切割确定(CFD)得分。[57]。两者都是基于选择的SGRNA与目标基因组中所有其他可能的SGRNA之间成对比较的分数,并且使用系数矩阵确定成对得分,该系数矩阵在SGRNA中考虑了不匹配位置,以及在CFD得分的情况下确定了不匹配的身份。因为两个分数的系数矩阵均来自
摘要:利什曼病是一类广泛传播的被忽视的寄生虫病,由利什曼原虫属的原生动物引起。每年报告的新病例约有 200 万,约有 1200 万人面临感染风险。尽管已使用各种疗法治疗利什曼病,但这些疗法与细胞毒性增加和耐药性问题有关。因此,本综述旨在展示他莫昔芬作为治疗利什曼病的替代方案的潜力。他莫昔芬是一种已知的选择性雌激素受体调节剂,已广泛用于治疗早期乳腺癌。各种实验和临床研究表明,它通过减少寄生虫负担具有抗利什曼作用,成本低,副作用少。他莫昔芬的抗利什曼作用与其对鞘脂代谢的潜在影响有关。此外,它通过诱导质膜电位改变来影响线粒体功能。然而,需要进一步详细研究才能显示其对健康结果的最终影响。关键词:他莫昔芬、利什曼病、鞘脂代谢、雌激素受体调节剂
摘要 疟疾在全球造成 200 多万人死亡。为了拉平这条曲线,需要开发新的高效抗恶性疟原虫药物。主要挑战包括缺乏适合抗恶性疟原虫检测的动物模型、对一线药物的耐药性、缺乏疫苗以及疟原虫复杂的生命周期。令人高兴的是,由于制药公司发布了大量数据集,出现了新的抗疟药物发现方法。本综述深入了解了这些新的药物发现方法,涵盖了不同的机器学习工具,这些工具有助于开发新化合物。它系统地回顾了机器学习在预测、分类和聚类抗恶性疟原虫生物活性化合物的 IC 50 值方面的应用和前景。作者确定了许多尚未用于此目的的机器学习工具。然而,随机森林和支持向量机已经广泛应用于有限的化合物数据集。
利什曼病是拉丁美洲、非洲、亚洲和欧洲的主要公共卫生问题之一。由于缺乏人用疫苗和有效的媒介控制计划,化疗成为控制所有形式该疾病的主要策略。然而,现有药物的高毒性、治疗药物的选择有限以及耐药性寄生虫菌株的出现是与化疗相关的主要挑战。目前,只有少数药物可用于利什曼病治疗,包括五价锑化合物 (SbV)、两性霉素B及其制剂、米替福新、硫酸巴龙霉素和羟乙基磺酸喷他脒。除了药物毒性之外,利什曼病的治疗失败也是一个严重的问题。耐药性寄生虫的出现是治疗失败的原因之一,并且与该属寄生虫的多样性密切相关。由于基因组具有巨大的可塑性,抗药性可以通过改变不同的代谢途径产生,这表明抗药性机制是多因素的,极其复杂。遗传变异和基因组可塑性不仅导致现有药物存在局限性,而且使寻找新药变得具有挑战性。在这里,我们研究了阻碍药物发现的寄生虫的生物学特性。
从人类疟疾寄生虫的基因组分析中获得的见解使我们对碱性疾病生物学,耐药性,疟疾流行病学和分子生态学的理解有所了解。技术进步以及分子和基因组工具的成本降低的消除措施,包括大规模(> 20,000个恶性疟原虫全基因组),合作的努力,以产生公开可用的人群水平的整体基因组数据以及对靶向测序的使用方法,以监测实时基因属于实时的基因种群。这项工作的大部分都集中在引起寄生虫的寄生虫的原发性人麦芽膜上。然而,由于许多国家通过这两种物种造成的疟疾消除,包括研究不足的人畜共患病诺里斯(P. Knowlesi)在内的其他疟疾寄生虫正在变得越来越关注。因此,我们研究计划的一部分是使用尖端的基因组和生物信息学技术来更好地了解P. Knowlesi的生物学,生态学和流行病学。这项工作是与马来西亚,印度尼西亚,新加坡,泰国,英国,美国和荷兰以及澳大利亚的海外合作伙伴进行的。我们以基因组为中心的计划涉及全基因组关联研究,大规模的种群遗传学分析以及分子监测工具的发展。我们的最终目标是为东南亚的疟疾消除努力做出贡献。
直到 2015 年,阐明利什曼原虫蛋白质功能的功能丧失研究都依赖于通过同源重组进行基因破坏。随后,CRISPR/Cas9 革命影响到了这些原生动物寄生虫,只需一轮转染即可实现有效的基因组编辑。此外,LeishGEdit 的开发(一种基于 PCR 的工具包,用于使用 CRISPR/Cas9 生成敲除和标记系)使基因组编辑更加直接有效。在此系统中,质粒 pTB007 被递送至利什曼原虫,在 b-微管蛋白基因座中进行游离表达或整合,并稳定表达 T7 RNA 聚合酶和 Cas9。在南美洲,尤其是在巴西,利什曼原虫 (Viannia) braziliensis 是皮肤利什曼病最常见的病原体。与利什曼原虫相比,L. braziliensis b-微管蛋白基因座表现出显著的序列差异,这阻碍了 pTB007 的有效整合和 Cas9 的稳定表达。为了克服这一限制,pTB007 中存在的 L. major b-微管蛋白序列被利什曼原虫 (Viannia) b-微管蛋白保守序列取代,从而产生了 pTB007_Viannia 质粒。这一修改使 pTB007_Viannia 盒式磁带成功整合到 L. braziliensis M2903 基因组中,并且计算机预测表明这也可以在其他 Viannia 物种中实现。通过敲除鞭毛蛋白 PF16 来评估 Cas9 的活性,这导致这些转染子中出现不动表型。内源性PF16也成功被mNeonGreen标记,并采用基因座互补策略将PF16基因的C端标记拷贝返回到原始基因座,从而恢复游泳能力。
RNA-Seq 数据表明,Pfhrp2 被破坏后,PfHO 的转录水平显著下调,从而进一步影响血红素代谢。同时,恶性疟原虫 3D7 线粒体中编码从头血红素生物合成途径相关酶的基因转录水平上调,例如 ALAS(该途径的第一个酶)和 FC,以增加寄生虫的血红素供应。然而,在寄生虫的顶质体中催化胆色素原转化为羟甲基胆烷的 PBGD 的转录表达下调。这可能减少顶质体中的血红素生物合成
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2021年9月11日发布。 https://doi.org/10.1101/2021.09.10.459878 doi:Biorxiv Preprint