复发性癫痫是指大脑电活动的短暂异常。癫痫发作的机制基础以及定义的神经元亚型对癫痫病理生理学的影响仍不清楚。我们在雄性和雌性 Dravet 综合征 (Scn1a / ) 小鼠(一种具有显著温度敏感性癫痫的神经发育障碍)中,在温度诱发癫痫发作期间对大脑皮层进行了体内双光子钙成像。在基线和升高的核心体温后安静清醒状态下,Scn1a / 小鼠的假定主细胞和小白蛋白阳性中间神经元 (PV-IN) 的平均活动均高于野生型对照。然而,野生型 PV-IN 显示出对温度升高的进行性同步,而 Scn1a / 小鼠的 PV-IN 则没有这种同步。因此,Scn1a / 小鼠的发作间期 PV-IN 活性保持完整,但在癫痫发作前立即表现出同步性降低。我们认为,在 Dravet 综合征中,PV-IN 同步受损可能导致温度诱发癫痫期间转变为发作状态。
激光剥离 (LLO) 通常用于将功能薄膜与下面的基板分离,特别是将基于氮化镓 (GaN) 的发光二极管 (LED) 从蓝宝石中分离出来。通过将 LED 层堆栈转移到具有定制特性的外来载体(例如高反射表面),可以显著提高光电器件的性能。传统上,LLO 是使用纳秒级的紫外激光脉冲进行的。当指向晶圆的蓝宝石侧时,蓝宝石/GaN 界面处的第一层 GaN 层吸收脉冲会导致分离。在这项工作中,首次展示了一种基于 520 nm 波长的飞秒脉冲的 LLO 新方法。尽管依赖于亚带隙激发的双光子吸收,但与传统的 LLO 相比,超短脉冲宽度可以减少结构损伤。在详细研究激光影响与工艺参数的关系后,我们开发了两步工艺方案,以制造边长可达 1.2 毫米、厚度可达 5 微米的独立 InGaN/GaN LED 芯片。通过扫描电子显微镜和阴极发光对分离的芯片进行评估,结果显示 LLO 前后的发射特性相似。
拓扑光子学已被引入作为集成光学的强大平台,因为它可以处理强大的光传输,并可进一步扩展到量子世界。令人惊讶的是,拓扑光子结构中的谷对比物理有助于形成与谷相关的边缘态、它们的单向耦合,甚至拓扑结中与谷相关的波分。在这里,我们设计和制作了基于 120 度弯曲界面的纳米光子拓扑鱼叉形分束器 (HSBS),并展示了第一个片上与谷相关的量子信息过程。我们的 50 = 50 HSBS 由两个拓扑不同的畴壁构成,实现了双光子量子干涉,即 Hong-Ou-Mandel 干涉,可见度高达 0.956 0.006。将这种 HSBS 级联在一起,我们还展示了一个简单的量子光子电路和路径纠缠态的产生。我们的工作表明光子谷态可以用于量子信息处理,并且有可能利用谷相关的光子拓扑绝缘体实现更复杂的量子电路,为片上量子信息处理提供了一种新方法。
活细胞需要能量,有些细胞比其他细胞需要更多能量。有些细胞的代谢率在几秒钟内从最小变为最大,而有些细胞则是无底洞,需要无节制地持续供应能量。能量底物和氧气的供应以及代谢废物的清除是通过复杂的血管网络来维持的,富含葡萄糖的血浆和充满氧气的红细胞 (RBC) 就是通过血管网络运输的。能量代谢的变化是诊断和监测组织疾病的常用指标,这一事实进一步强调了深入了解能量供应的重要性。大脑也不例外,但它有许多特殊功能和未解之谜。能量需求大约比身体每体积的平均能量需求高出一个数量级。最重要的是,由于大脑的能量储存能力有限,因此必须持续供应氧气和葡萄糖。供应中断几分钟就会对脑细胞造成不可逆转的损害。因此,大脑使用复杂的调节系统来控制其能量供应,该系统涉及壁细胞以及神经元和神经胶质细胞。更清楚地了解单个血管和整个脉管系统水平的血流变化对于揭示这个相互关联的系统如何协调其适应性至关重要。在 PNAS 中,Meng 等人 (1) 介绍了一种强大的超快速方法来改善微血管网络中脑血流的体内测量,这将大大提高双光子显微镜在量化微血管灌注方面的适用性。尽管自 19 世纪末以来我们就知道大脑会局部调节血流以满足局部能量需求的增加 (2, 3),但潜在的血液动力学过程以及细胞间和细胞内的信号通路仍然很大程度上未被发现(有关最近的综述,请参阅参考文献 4 和 5)。并且,在当前背景下需要强调的是,允许以高空间和时间分辨率测量血流的方法有限,但它们对于产生对血液调节微血管方面的新见解至关重要。由于其重要性,研究人员不断开发和应用各种方法来测量脑血流。这些方法基于不同的模式,例如放射性标记扩散化合物、氢扩散和微电极技术、磁共振成像、光谱、光学相干断层扫描、激光散斑成像,以及最近的聚焦超声和光声成像。其中一些方法已达到黄金标准地位,而其他方法则从地图上消失了。1998 年,Kleinfeld 等人 (6) 引入双光子显微镜来追踪单个红细胞。在接受静脉注射荧光葡聚糖以染色血浆的麻醉小鼠中,通过毛细血管短段的千赫兹线扫描来量化位移
三维 (3D) 打印,也称为增材制造 (AM),在可定制和高精度部件的制造方面经历了快速发展阶段。得益于 3D 打印技术的进步,现在可以将细胞、生长因子和各种生物相容性材料一起打印成任意复杂的 3D 支架,这些支架在结构和功能上与天然组织环境具有高度相似性。此外,光学 3D 打印方法在成型效率、分辨率和适用材料选择方面具有压倒性优势,无疑已成为组织工程 (TE) 中支架制造最合适的方法。在本文中,我们首先全面、最新地回顾了当前用于支架制造的光学 3D 打印方法,包括传统的基于挤压的工艺、选择性激光烧结、立体光刻和双光子聚合等。具体来说,我们回顾了光学设计、材料和代表性应用,然后进行了制造性能比较。重要指标包括制造精度、速率、材料和应用场景。最后,我们总结并比较了每种技术的优缺点,以指导光学和 TE 社区的读者在不同的应用场景下选择最合适的打印方法。
自从著名的玻尔-爱因斯坦对话以来,人们就知道,在干涉实验中,不可能同时获得最大可见度的干涉图样和路径信息。量子力学的这一特性是其一致性所必需的,费曼 2 将这一特性提升为一个原则:每当不可能(甚至在原则上)获得路径信息时,就必须叠加概率幅度,而不是将概率相加,以进行实验预测。玻尔引入了互补性的概念来描述两个可观测量不能同时精确知道的情况,海森堡不确定性原理就是其中的一个特例。对于玻尔来说,互补性是由于测量一个量(例如位置)的仪器的设计本身就排除了对互补量(这里是动量)的测量。在本文中,我们讨论了干涉和路径信息之间互补性的三个明确情况,并提出了一些有趣的结果。在第 2 节中,给出了双光子量子擦除器的实验实现;在第 3 节中,我们讨论了基于这些想法实现新的纠缠光子强源;在第 4 节中,我们介绍了与路径信息考虑密切相关的 Aharonov-Bohm 和 Einstein-Podolsky-Rosen 非局域性尖端之间的非平凡关系。
摘要:纠缠在量子信息处理中起着至关重要的作用。由于其独特的材料特性,碳化硅最近成为可扩展实现先进量子信息处理能力的有希望的候选者。然而,迄今为止,在碳化硅中仅报道了核自旋的纠缠,而纠缠光子源,无论是基于块体还是芯片级技术,仍然难以捉摸。在这里,我们首次报告了集成碳化硅平台中纠缠光子源的演示。具体而言,通过在4H绝缘体上碳化硅平台中的紧凑微环谐振器中实现自发四波混频,在电信C波段波长处有效地产生强相关的光子对。在泵浦功率为 0 时,最大巧合与意外比率超过 600。17 mW,对应的成对率为 ( 9 ± 1 ) × 10 3 对/秒。针对此类信号-闲置光子对创建并验证了能量-时间纠缠,双光子干涉条纹的可见度大于 99%。还测量了预期的单光子特性,预期的 𝑔 ( 2 ) ( 0 ) 约为 10 − 3 ,表明 SiC 平台有望成为量子应用的完全集成、CMOS 兼容的单光子源。
利用三维动力学模拟,我们研究了具有预填充圆柱形通道的结构化激光辐照目标所发射的准直伽马射线束。该通道引导入射激光脉冲,从而产生缓慢发展的方位等离子体磁场,该磁场有两个关键功能:增强激光驱动的电子加速和诱导高能电子发射伽马射线。我们的主要发现是,通过利用具有最佳密度的通道,可以在不增加激光强度的情况下显著提高激光能量到伽马射线束 (5 ◦ 开角) 的转换效率。当我们将 P 从 1 PW 增加到 4 PW 时,保持激光峰值强度固定在 5 × 10 22 W/cm 2 ,转换效率随着入射激光功率 P 大致线性增加。这种缩放是通过在通道中使用 10 到 20 n cr 之间的最佳等离子体密度范围来实现的,其中 n cr 是电磁波的经典截止密度。相应的光子数按 P 2 缩放。一个直接受益于这种强缩放的应用是通过双光子碰撞产生对,在固定激光强度下,产生的对的数量按 P 4 增加。
双光子钙成像技术可以以单细胞分辨率读取活体生物体内大量神经元的活动,从而为大脑如何处理信息提供新的见解。全息光遗传学使我们能够直接触发这些神经元的活动,从而增加了将信息注入活体大脑的可能性。然而,光遗传学触发模拟“自然”信息的活动需要基于功能网络的实时分析来识别刺激目标。我们开发了 NeuroART(实时神经元分析)软件,该软件可以实时读取神经元活动,并集成相关性和同步性以及感官元数据的下游分析。以听觉刺激为例,我们展示了实时推断视野中每个神经元对感官信息处理的贡献。为了避免显微镜硬件的限制并实现多个研究小组的合作,NeuroART 无需修改显微镜控制软件即可利用显微镜数据流,并且与各种显微镜平台兼容。 NeuroART 还集成了驱动空间光调制器 (SLM) 的功能,用于对最佳刺激目标进行全息光刺激,从而实现功能网络的实时修改。用于光刺激实验的神经元是从 Sprague Dawley 雌雄大鼠胚胎中提取的。
摘要 神经图的布线特异性在发育过程中是如何出现的?成年果蝇嗅球图的形成始于早期蛹期投射神经元 (PN) 树突的模式化。为了更好地了解该图布线特异性的起源,我们创建了遗传工具,以 PN 类型特定分辨率系统地表征整个发育过程中的树突模式。我们发现 PN 使用谱系和出生顺序组合来构建初始树突图。具体而言,出生顺序分别以旋转和二元方式指导前背谱系和侧谱系 PN 的树突靶向。基于双光子和自适应光学晶格光片显微镜的延时成像显示,PN 树突在数秒的时间尺度上启动主动靶向,并实现方向依赖的分支稳定。此外,幼虫和成虫嗅觉回路中使用的 PN 会修剪幼虫特有的树突,并同时重新延伸新的树突,以促进嗅觉图的及时组织。我们的工作强调了类型特异性神经元通路和延时成像在识别复杂功能神经图模式背后的接线机制方面的力量和必要性。