摘要 过苯甲酸叔丁酯(TBPB)是一种常见的聚合反应引发剂,但其分子结构中的过氧键极易断裂,导致分解甚至爆炸。为探究TBPB的热行为,抑制反应过程中产生的自由基的热危害,采用成熟的量热技术对TBPB的热稳定性进行了测定。采用Kissinger-Akahira-Sunose (KAS)、Flynn-Wall-Ozawa (FWO)和Starink动力学方法计算了TBPB分解反应的表观活化能。通过傅里叶变换红外光谱(FTIR)实验测定了TBPB热分解产物,利用电子顺磁共振波谱(EPR)结合自由基捕获技术对反应过程中产生的自由基进行了定性分析。本研究选取自由基捕获剂及抑制剂2,2,6,6-四甲基哌啶氧基(TEMPO)作为TBPB热分解反应热失控抑制剂,验证了其对相应自由基及TBPB分解反应热失控的抑制效果。研究发现TEMPO可有效降低TBPB潜在的热危险性和事故风险,为TBPB生产、储运过程中热灾害的预防与治理提供有力参考。
修订过程安全管理标准 (PSM),29 CFR 1910.119,以更全面地控制可能导致灾难性后果的反应性危害。 (2001-01-H-R1) - 扩大应用范围,涵盖由特定过程条件和化学品组合导致的反应性危害。此外,扩大自反应化学品危害的覆盖范围。在扩大 PSM 覆盖范围时,应使用客观标准。考虑以下标准:北美行业分类系统 (NAICS)、反应性危害分类系统(例如,基于反应热或有毒气体释放)、事件历史或灾难性潜力。 - 在汇编过程安全信息时,要求充分参考多种信息来源,以了解和控制潜在的反应性危害。有用的来源包括: - 文献调查(例如,Bretherick 的《反应性化学危害手册》、Sax 的《工业材料的危险特性》)。 - 通过计算机工具开发的信息(例如,ASTM 的 CHETAH、NOAA 的化学反应性工作表)。反应性危害调查 10-17-02,第 90 页 - 雇主提供或从其他来源获得的化学反应性测试数据(例如差示扫描
方法原理 该方法包括将脂肪倒入与黄油计分开的特殊测量容器中,并确定其体积以质量百分比表示。 脂肪以小球的形式存在于牛奶中,其直径从 0.1 到 10 微米不等。脂肪球与牛奶液体形成一致的乳液。脂肪球被保护涂层、磷酸甘油酯脂肪球膜、脂肪球外壳蛋白和水合物包围。脂肪球周围的蛋白质涂层可防止它们聚结并稳定乳化状态。为了完全分离脂肪,必须破坏脂肪球周围的保护涂层。这是用 90 到 91% 质量浓度的浓硫酸来完成的。硫酸氧化并水解脂肪球、乳蛋白部分和乳糖周围的保护层中的有机成分。除了稀释热之外,还会产生大量反应热。乳酸计会变得非常热。氧化产物使所得溶液变成
评估了有无 CO2 捕获和储存 (CCS) 的生物基芳烃生产方案的技术经济性能和 CO2 当量 (CO2eq) 减排潜力,并将其与化石基芳烃生产方案进行了比较。生物方案包括尾气反应热解 (TGRP)、催化热解 (CP)、热液化 (HTL)、气化-甲醇-芳烃 (GMA) 和呋喃/糠醛的 Diels-Alder 结合木质素的催化热解 (FFCA)。原油基石脑油催化重整 (NACR) 路线的温室气体排放量分别为 43.4 吨 CO2eq/t 芳烃 (NACR-CCS) 和 43.9 吨 CO2eq/t 芳烃。除 HTL 外,所有采用 CCS 的生物质方案均出现负排放,排放量在 −6.1 至 −1.1 t CO2eq/t 芳烃之间,减排成本在 27.7 至 93.3 $/t CO2eq 之间。在有利条件下,采用 CCS 的 GMA(GMA-CCS)排放量最低(−14.6 t CO2eq/t 芳烃),而采用 CCS 的 CP(CP-CCS)减排成本最低(12.3 $/t CO2eq)。目前,除 CP 拥有中试工厂外,所有基于生物质的芳烃生产技术均处于实验室或示范阶段。结果表明,生物基芳烃生产具有合理的减排成本和较低或潜在的负温室气体 (GHG) 排放量,是弥补未来几十年预期芳烃生产短缺的一个有吸引力的选择。
摘要:聚光太阳能能够为不同应用提供高温工艺流。一种有前景的应用是需要 800 ◦ C 以上蒸汽和空气的高温电解过程。为了克服太阳能的间歇性,需要储能。目前,这种温度下的热能主要可以作为显热存储在填料床中。然而,这种存储在几个循环后会损失可用的存储容量。为了改进这种存储,建立了一个使用空气作为传热介质的一维填料床热能存储模型,并用于研究和量化加入钙钛矿类不同热化学材料的好处。钙钛矿经历非化学计量反应延伸,可在更大的温度范围内利用热化学热。考虑了三种不同的钙钛矿:SrFeO 3 、CaMnO 3 和 Ca 0.8 Sr 0.2 MnO 3 。总共 15% 的显热储能被一种钙钛矿取代,并分析了反应材料的不同位置。研究了反应热对 15 次连续充电和放电循环中储能性能和热降解的影响。基于所选的变化和反应材料,储能容量和有用能量容量均有所增加。在储能系统冷入口/出口附近进行部分替换可将总储能容量提高 10.42%。要充分利用热化学材料的优势,合适的操作条件和材料的合适放置至关重要。
摘要:本文介绍了远程同步普通化学实验课程的开发情况,该课程于 2020 年秋季学期向 800 名学生提供。该课程的设计目标与我们的线下实验课程相似,并采用由教师、教职员工和研究生助教团队开发的化学试剂盒。这些试剂盒通过大学书店的租赁计划分发,为学生提供了在家中或宿舍中进行动手实验的机会。为了创建远程实验课程,该团队协商了后勤和课程问题,例如寻找昂贵的精密玻璃器皿和仪器的替代品、增加让学生在线参与的策略、减少实验的化学危害以及鼓励远程工作的学生建立安全文化。与普通化学实验室计划相关的助教教师专业发展研究生课程也通过包含与理解远程学习环境相关的主题而得到增强。在重新设计远程授课实验课程时,我们开发了新的实验(例如校准),引入了新的参与策略(例如徽章),修改了几个实验(例如反应热),包括基于 Arduino 的光谱仪(例如可见光谱和脉搏血氧仪),并提供了新的学生支持(例如随叫随到的助教)。收集调查数据以评估学生对动手活动的评价、同步助教帮助的存在、徽章体验、实验课程的价值以及在疫情期间参加实验课程所面临的挑战。关键词:高中/化学入门、本科一年级/普通、课程、实验室指导、远程学习/自学、动手学习/操作、互联网/基于网络的学习、实验室管理、助教培训/指导■简介
烧结(DC)和两者使用原位反应的变体已成为产生相对密度以上相对密度的相纯UHTC的偏爱烧结方法。15–19对于IV组的烧结(0.65 <ρ相对<0.90)的中间阶段,据报道,据报道的激活能量范围为140至695 kJ/mol的Zrb 2,56至774 kJ/mol的TIB 2,以及96 kJ/mol的HFB 2。5,20–23总体而言,研究得出的结论是,尽管激活能的值应仅取决于致密化的机械性,但更细的初始粒径和增加的压力降低了激活能量。对于烧结的中间阶段,Lonergan报道说,晶界扩散是在2000℃低于2000℃的反应热的Zrb 2中的主要机制,其激活能为241 kj/mol,但晶状体扩散成为2000°C的主要机制,其激活能量为695 kJ/mol。21 Kalish研究了HFB 2的极端压力(800 MPa)下的致密性最后阶段的动力学,并报告了激活能为96 kJ/mol。kalish建议该机制可能是脱位流,因为激活能量足够低,但没有提供其他机械的证据。kalish最终得出结论,在HFB 2的致密阶段,HF的B或晶界扩散是HF的晶界扩散是主要机制。5从那时起,几项研究报告了硼化物中的脱位运动。Koval'Chenko得出结论,脱位运动受到金属sublattice中金属物种的自扩散的限制。2424–29 Koval'Chenko螺柱的钼和钨硼的致密动力学,并报道激活能量是压力的独立性,这表明脱位滑行过程。28 bhakhri估计了使用压痕实验的154±96 kJ/mol中ZRB 2中脱位运动的活化能,并假设汉堡矢量沿着<1 0 0 0 0>方向。
LTP UNIT I 3 1 0 1. 异双原子分子的分子理论、金属键合能带理论、氢键。 2. 固态化学:半径比规则、空间晶格(仅立方体)、晶胞类型、布拉格定律、晶胞密度计算。一维和二维固体、石墨作为二维固体及其导电特性。富勒烯及其应用。 UNIT II 1. 光谱法的基本原理。利用紫外、可见光、红外、1 HNMR 确定简单有机化合物的结构。 2. 聚合物的特性和分类。 3. 聚合物的结构:天然和合成橡胶、聚酰胺和聚酯纤维、聚甲基丙烯酸甲酯、聚丙烯腈和聚苯乙烯。导电聚合物(聚吡咯和聚噻吩)及其应用的简介。第三单元 1. 反应中间体的稳定性,例如碳负离子、碳正离子和自由基。有机反应的类型以及亲核取代反应的机理。2. 以下反应的机理。1. 醇醛缩合 (ii) 坎尼扎罗反应 (iii) 贝克曼重排 (iv) 霍夫曼重排和 (v) 狄尔斯-阿尔德反应。3. EZ 命名法。含有一个手性中心的有机化合物的光学异构体。不具有手性的光学活性化合物的例子。正丁烷的构象。第四单元 1. 反应的顺序和分子数。一级和二级反应。活化能。2. 相律及其在单组分系统(水)中的应用。3. 平衡电位、电化学电池(原电池和浓差电池)、电化学腐蚀理论及防腐。第五单元 1. 燃料的分类,煤、生物质和沼气。使用弹式量热仪测定总热值和净热值。2. 热力学第一定律及其数学表述,热量、能量和功;系统的热含量或焓;热化学:Hess 恒定热总和定律、反应热、燃烧热、中和热、生成热、熔化热、汽化热、升华热、溶解热和稀释热(仅定义和解释)。