功能;它自然发生在许多小的有机分子中。可以在补品水中找到一个经典的例子。滋补水含有分子奎宁,当暴露于紫外线时,它会发光明亮的青色(蓝色绿色)。分子不会自行发光,并非每个分子都会产生光泽。首先,要产生光,分子必须吸收 - 摄入 - 能源。通常,荧光染料吸收电磁频谱上较高能量的光,例如无形的紫外线。随着原子摇动或振动,激发电源吸收的某些能量会损失,然后当电子返回基态时,发出了较低能量的光,例如可见光,会散发出来。化学家会说,当他们吸收紫外线时,分子从基态上“兴奋”,然后“放松”并落回基态发光或产生可见光。具有正确的结构对于光的发射至关重要。分子激发后,它们可以通过
电致发光线(适用于编织或针织)的进步为发光纺织品的开发打开了大门,推动了柔性和可穿戴显示器市场的增长。虽然直接在这些纺织品上绣上定制的设计和图案可以带来很大的好处,但机器刺绣的严格要求对这些线的完整性提出了挑战。在这里,我们展示了可刺绣的多色电致发光线(蓝色、绿色和黄色),它们与标准刺绣机兼容。这些线可用于将装饰图案缝制到各种消费织物上,而不会影响其耐磨性或发光能力。演示包括在消费产品上点亮特定信息或设计,并在头盔衬里上发出物理危害的紧急警报。我们的研究提供了一个全面的工具包,用于将发光纺织品集成到时尚的定制工艺品中,以满足各种柔性和可穿戴显示器的独特要求。
摘要:一组新型的供体 - 受体donor(D-A-D)苯甲二唑衍生物已合成并在纳米晶体中结晶,以探索其化学结构与波导发光特性之间的相关性。的发现表明,所有晶体都表现出发光和主动的光学波形,这表明能够根据附着在苯甲酰甲二氮唑核的供体组中调节其在550–700 nm的宽光谱范围内。值得注意的是,每种化合物的同型能量间隙与相应光波导的颜色发射之间存在明显的关系。这些结果肯定了通过合适的化学功能化来修饰有机波导的颜色发射的可行性。重要的是,本研究标志着出于这种目的的苯甲酰基衍生物的首次利用,强调了这项研究的独创性。此外,纳米晶体的获得是实施微型光子设备的关键工具。
根据国际能源署 (IEA) 和欧洲环境署 (EEA) 的数据,能源消耗量逐年增加。这刺激了人们对新能源的探索和现有能源效率的提高。据预测,到 2030 年,光伏设备将产生太瓦级能源,同时千瓦时成本也将降低 [1]。太阳能是最经济实惠的能源之一。硅基太阳能电池主要用于太阳能利用。大部分能源将由硅太阳能电池板产生。除了硅之外,还有各种多层复合材料,如 GaAs、CdTe、Cu(In,Ga)Se 2 和最近提出的钙钛矿结构 [2, 3]。后者价格昂贵,难以在工业规模上生产。此外,由于有毒成分,过期后处理也存在问题,使用此类复合材料违背了绿色化学的原则。硅的优势在于化学可用性、技术链的成熟度、电子元件(包括含有稀土元素的元件)的处理。同时,硅基太阳能电池的一个严重缺点是光电转换效率 (LECE) 相对较低,即最佳样品的转换效率不高于 25% [4,5]。硅的最高光敏性区域位于约 1 µ m,其 LECE 光谱与太阳发射光谱的对应性较差。通过将太阳辐射从紫外线和蓝色光谱范围向下转换为 1 µ m 光谱范围来提高硅太阳能电池板的效率是一项紧迫的任务,对于太空应用而言,这非常现实 [6– 9]。潜在的发射体是三价镱离子,因为它的近红外 (NIR) 发光带约为 1000 nm( 2 F 5 / 2 – 2 F 7 / 2 跃迁)[9–13],与硅电池的 LECE 光谱顶部高度重合。Ba 4 Y 3 F 17 [14–17] 是经过深入研究的新型发光基质之一,因为它表现出下转换发光的高量子产率 [14]。对于在这些光谱区域吸收的各种敏化阳离子,能量可以从紫外和蓝色光谱区域转移到镱。一种特别有效的能量转移机制是通过敏化剂离子的逐步弛豫,通过量子切割机制激发两个受体离子 [12, 13, 18, 19]。量子切割表现出高达 195% 的高量子效率系数,但 NIR 发光的量子产率较低。更有效的途径是在具有更高发光量子产率的系统中简单地降档。一种有前途的组合物是 Yb/Eu 掺杂对,因为铕的吸收光谱包含 UV 和蓝色光谱区域的几条线。镱发光的最高直接测量量子产率(2.对于 SrF 2 :Yb (1.0 mol %):Eu (0.05 mol %) 粉末,在 266 nm 泵浦下达到 5 % [20]。本文旨在合成 Ba 4 Y 3 F 17 :Yb:Eu 固溶体并研究其发光性能。该样品旨在用于增强硅太阳能电池的 LECE。
发光的太阳能集中器是可能用于建筑窗口的透明光伏模块。要存储由它们产生的能量,需要一个单独的储能模块和电压调节器模块,但是很明显,该配对对于应用来说是笨拙的。为了解决这个问题,我们提出了“面对面”发光太阳能集中器和电染色器超级电容器的“面对面”串联整合。在这种情况下,不需要分离的储能模块和电压调节器模块,因为阳光下的浓缩器产生的电能可以由具有匹配的电压窗的超级电容器直接存储。带电的储能模块可用于提供低功耗设备。此外,在不同的储能状态下,电致色素超级电容器在不同的储能状态下显示出可调节的平均可见传输,这使集成设备有趣的是自动化的电致智能智能窗口或展示设备。作为一个例子,准备了一个自动的信息指令显示,并且可以以可控的方式清楚,迅速地显示文本消息。能够进行光伏转换,能量存储和电化色的集成设备是智能窗口的有前途的替代方案。
我们在此报告中的近红外(NIR) - 发光蛋白质复合物与共轭聚合物。我们已经发现,NIR区域中的固态发光可以从由硼偶氮苯复合物组成的一系列共轭聚合物中获得。我们在本文中证明了蛋白质分子可以通过与含硼偶氮苯的共轭聚合物的吸附来修饰,仅通过在水缓冲液中混合并随后用过滤纯化,然后冷冻干燥。修饰的蛋白质复合物可以在缓冲液中表现出NIR发射和高色散性。特别是,与吲哚羟氨酸绿(ICG)相比,这是一种常规的衰老染料染料,聚合物修饰的蛋白质复合物显示出对光漂白的耐药性。最后,通过将脂肪酶用作支架,我们证实了在聚合物修饰后可以检测到酶促活性。关键字:共轭聚合物;近红外发光;唑苯;蛋白质复合物
随着发光互动工作的生活联系,雅克·卡地亚桥(Jacques Cartier Bridge)成为世界上第一个网络桥梁。它亮起了,每天晚上都栩栩如生,这要归功于适应季节和城市能量的智能节目。被数以百万计的人类和自然连接激活,桥在日落时唤醒,并以当天的第一光灯入睡。该市雄心勃勃的创新新发光签名是对蒙特利尔城市景观的标志性建筑特征的致敬。
抽象发光构成了对金属热载体过程的独特洞察力,包括用于传感和能量应用的等离子纳米结构中的载体过程。然而,金属发光本质上是弱的,其微观起源仍然存在很广泛的争论,并且它的纳米级载体动力学的潜力在很大程度上无法解释。在这里,我们揭示了从薄单晶金质量产生的发光中的量子力学效应。特别是,我们提供了第一个原理模拟支持的实验证据,以证明其光致发光的起源(即,在互面板中令人兴奋时,会从电子/孔重组中产生的辐射发射)。我们的模型使我们能够确定由于量子机械效应而导致的测得的金发光的变化,因为金纤维厚度降低。令人兴奋的是,这种效应在厚度高达40 nm的发光信号中可观察到,这与费米水平附近电子带结构的平面离散性有关。我们通过第一个原理建模来定性地重现观测值,从而确立了在金单晶型中的发光统一描述,并将其广泛的应用作为携带者的探针,以探测本材料中的载体动力学和光 - 摩擦相互作用。我们的研究为在众多材料系统中的热载体和电荷转移动力学的未来探索铺平了道路。
I.简介电池电量指示器只会通过发光LED数量来知道设备的电池状态。例如,四个LED发光意味着电池容量为40%。您可以与逆变器或汽车电池一起使用此电路;它将为您提供有关电池状态的指示。因此,在电池死亡之前,您可以为其充电。该电路的优势是它不需要电源;它将从设备本身的电池中采用电源。这个简单的电路基于单个IC LM3914,其中很少有离散组件。LM3914是一个整体集成电路,它感应模拟电压并得出10 LED提供线性模拟显示。在本文中,我们将展示如何使用易于可用的组件设计简单的电池电量指示器。电池电量指示器仅通过发光的LED指示电池的状态。例如,六个LED发光意味着电池容量仍有60%。本文将解释如何设计电池级指示器。我们可以使用此电路检查汽车电池或逆变器。因此,通过使用此电路,我们可以增加电池的寿命。
聚集诱导的排放(AIE)已被大大用于可视化材料聚集和自组装。但是,制备AIE聚集体通常需要水,该操作的操作限制了许多材料处理行为。采用基于六磷酸的小分子,单聚合物和嵌段共聚物作为不同的材料原型,我们在这里通过应用非平衡策略,光激发控制的聚合来实现纯有机相的AIE。这种策略使分子构象而不是化学结构在辐照后的动态变化,从而导致有机溶剂中连续依赖聚集的发光增强(在发光量子量产率上增加了约200倍)。伴随着非平衡策略的实质性化,可以在有机溶剂加工的情况下实现具有稳态特征的光旋转自组件。带有发光变化的视觉监测覆盖了整个溶液到纤维过渡,以及固态材料的原位光处理。