摘要 — 本文旨在开发基于人工智能 (AI) 的电网形成逆变器发电机控制器。本文说明了控制器在简化孤立微电网中的相关性。采用的 AI 方法依赖于监督学习,因此需要训练数据集。首先,选择案例研究和用例,并定义场景以从经过实验验证的虚拟同步发电机 (VSG) 控制器创建训练数据集。用例代表电网形成逆变器的黑启动和负载需求的变化及其特性。然后,使用收集到的数据集来训练 AI 模型,该模型集成在模拟逆变器的控制中,以便在所选用例上与 VSG 控制器进行测试和比较。所提出的基于 AI 的控制器可确保简化微电网的稳定性,将电压和频率维持在标称值。保证供电连续性,并且能够适应负载特性的变化。此外,所提出的控制器除了在负载转换期间具有高稳定性外,还对负载变化表现出快速响应。索引术语 — 电网形成控制、基于逆变器的发电机、人工智能、神经网络、监督学习
近年来,可持续能源系统的转变见证了无碳和碳高效发电在电网中的快速部署。然而,碳减排的好处并非在整个电网中均匀体现。每个发电机可以有不同的碳排放率。由于物理功率流的存在,节点功耗由一组发电机的组合来满足,而这种组合由网络拓扑、发电机的特性和电力需求决定。本文介绍了一种基于物理功率流模型的技术,该技术可以根据发电和功率流信息有效地计算每个单个发电机贡献的节点碳排放量。我们还扩展了该技术以计算节点平均碳排放量和边际碳排放率。模拟结果验证了计算的有效性,同时我们的技术为碳审计、碳导向需求管理和未来碳导向产能扩张等应用提供了基本工具。
阿尔伯特·爱因斯坦高中发电机更换目录 第 23 部分 – 供暖、通风和空调 (HVAC) 部分页面 23 0101 HVAC 一般规定 23 0101 - 1-9 23 0500 HVAC 的常见工作结果 23 0500 - 1-7 23 0504 HVAC 拆除 23 0504 - 1-2 23 0513 HVAC 设备的常见电机要求 23 0513 - 1-6 23 0529 HVAC 管道和设备的吊架和支架 23 0529 - 1-6 23 1123 天然气管道 23 1123 - 1-10 第 26 部分 – 电气部分页面 26 0101 电气一般规定26 0101 - 1-10 26 0500 电气常见工作成果 26 0500 - 1-4 26 0501 电气工程开挖和填筑 26 0501 - 1-4 26 0504 电气拆除 26 0504 - 1-2 26 0507 电气工程防火 26 0507 - 1-5 26 0519 电线和电缆 26 0519 - 1-7 26 0521 接线 26 0521 - 1-1 26 0526 接地和接合 26 0526 - 1-4 26 0528 设备基础 26 0528 - 1-2 26 0533 导管 26 0533 - 1-9 26 0534 接线盒 26 0534 - 1-2 26 0535 地面电缆管道 26 0535 - 1-2 26 0544 地下管道和公用设施结构 26 0544 - 1-4 26 0553 电气系统标识 26 0553 - 1-7 26 0573 过流保护装置研究 26 0573 - 1-5 26 2200 变压器 26 2200 - 1-4 26 2416 配电板 26 2416 - 1-7 26 2550 发电机坞站 26 2550 - 1-3 26 2726 接线装置 26 2726 - 1-3 26 2800 封闭电路保护装置 26 2800 - 1-4 26 2813 保险丝 26 2813 - 1-2 26 2923 变频驱动器 26 2
对于所有 OEM 的设备,JEUMONT Electric 为其功率范围及以上的中高压发电机提供广泛的服务,最高可达 1600MVA。该公司可以在 Jeumont 工厂或全球现场调动 60 多名经验丰富的工程师和技术人员(研发、设计、装配、绕线、调试)。他们的设计和干预能力以及制造和测试手段使他们能够涵盖专门针对此类机器的全方位服务:• 测试和评估 • 纠正或程序化维护 • 维修、改造、更换、逆向工程。• 机器和网络工程(稳定性、瞬态、保护、
图 1. 完整的风洞组件 ...................................................................................................... 2 图 2. 位于收缩锥前方的蜂窝结构 ...................................................................................... 5 图 3. 拆解的风洞组件:(1)收缩锥,(2)测试/工作部分,和(3)扩散器 ............................................................................................................. 5 图 4. 安装风扇并连接到 12 伏电池的驱动部分 ............................................................................. 6 图 5. 收缩锥示意图 ............................................................................................................. 10 图 6. 测试部分内的安装物体 ............................................................................................. 10 图 7. 扩散器示意图 ............................................................................................................. 11 图 8. 数字风速计 ............................................................................................................. 12 图 9. 双输入数字压力计 ............................................................................................. 12 图 10. 用于收集数据的测试部分内的风速计装置 ............................................................................. 12 图11. 12 伏电池和鳄鱼夹用于为风扇供电 ................................................................ 14 图 12. 收缩锥(SolidWorks) ................................................................
摘要:随着多电飞机 (MEA) 的发展,一个关键的研究领域是开发可靠、高效、质量轻且与当前和未来飞机的功率和多路复用要求兼容且相称的商业上可行的系统。在旋翼机中,采用多电系统(例如,取代传统的机械和液压系统)的速度被认为比固定翼飞机要慢得多。然而,最近有越来越多的证据表明,四联电动尾桨 (ETR) 是一种技术上可行的解决方案。本文介绍了支持为这种四联尾桨驱动器供电所需的四个独立发电机的最可靠配置的方法,并考虑了每个独立通道功率损耗导致的故障严重程度、目标可靠性设置和支持可靠性分析。得出的结论支持一种特定的混合串并联发电机配置,并确定了与变速箱可靠性相关的进一步工作,以支持配置的可靠性实现。
191 200.0 200.0 PV 卡姆登 - 达尔泽尔 230 kV 线路 192 82.0 97.0 NG Rainey 230 kV 开关站 193 82.0 97.0 NG Rainey 230 kV 开关站 194 82.0 97.0 NG Rainey 230 kV 开关站 195 168.0 188.0 NG Rainey 230 kV 开关站 196 168.0 188.0 NG Rainey 230 kV 开关站 197 168.0 188.0 NG Rainey 230 kV 开关站 198 168.0 188.0 NG Rainey 230 kV 开关站站 199 168.0 189.0 NG Rainey 230 kV Sw. 站 200 189.0 209.0 NG Rainey 230 kV Sw.站 206 198.0 198.0 PV Cross – Jefferies 230 kV 线路 207 88.2 88.2 PV Marion – Bennettsville 230 kV 线路 208 74.9 74.9 PV Aiken 3 – Shamrock 115 kV 线路 211 74.8 74.8 PV Allen – Pine Level #2 115 kV 线路 212 69.6 69.6 PV Orangeburg – St. George #2 115 kV 线路 219 212.5 212.5 PV Bucksville – Campfield 230 kV 线路 220 250.0 250.0 PV & BESS Winyah – Bucksville 230 kV 线路 222 74.5 74.5 BESS Bells Crossroads – St. George #1 115 kV 线路 223 74.5 74.5 BESS Kingstree - Lake City 69 kV 线路(威廉斯堡工业
7 注:(1)*部分项目的混合储能容量是使用提供单独容量数据的项目中的储能:发电机比率估算的,并且该值仅从 2020 年开始包含。互连队列数据中未提供储能持续时间。(2)风电容量包括所有年份的陆上和海上风电容量,但海上风电容量仅从 2020 年开始细分。(3)混合发电容量包括所有适用的发电机类别。(4)并非所有这些容量都会建成。
免责声明:洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占、免版税的许可,可以出于美国政府目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
我们需要每个人的输入来探索所有可能性,以使该项目成为现实!NCTCOG希望与研究领域的所有感兴趣的小组联系。我们期待安排演讲和/或参加已经安排的任何即将举行的活动,我们可以共享信息并收集研究的意见。请立即与您联系您的建议,这些小组需要收到我们的来信。一起,我们可以确保听到所有利益相关者的声音。