我们提出了一种变分量子算法来制备一维格子量子哈密顿量的基态,该算法专门为可编程量子设备量身定制,其中量子位之间的相互作用由量子数据总线 (QDB) 介导。对于具有轴向质心 (COM) 振动模式作为单个 QDB 的捕获离子,我们的方案使用共振边带光脉冲作为资源操作,这可能比非共振耦合更快,因此不易退相干。状态准备结束时 QDB 与量子位的分离是变分优化的副产品。我们用数值模拟了离子中 Su-Schrieffer-Heeger 模型的基态制备,并表明我们的策略是可扩展的,同时能够容忍 COM 模式的有限温度。
摘要 强关联化学和材料系统的变分算法是近期量子计算机最有前途的应用之一。我们提出了变分量子特征值求解器的扩展,它通过求解由一组参数化量子态组成的子空间中的广义特征值问题来近似系统的基态。这允许系统地改进逻辑波函数假设,而不会显着增加电路复杂性。为了最大限度地降低这种方法的电路复杂性,我们提出了一种有效测量汉密尔顿量并在由与总粒子数运算符交换的电路参数化的状态之间重叠矩阵元素的策略。该策略使状态准备电路的大小加倍,但没有使其深度加倍,同时相对于标准变分量子特征值求解器增加了少量额外的两量子比特门。我们还提出了一种经典的蒙特卡罗方案来估计由有限数量的矩阵元素测量引起的基态能量的不确定性。我们解释了如何扩展此蒙特卡罗程序以自适应地安排所需的测量,从而减少给定精度所需的电路执行次数。我们将这些想法应用于两个模型强关联系统,即 H 4 的方形配置和己三烯 (C 6 H 8 ) 的 π 系统。
摘要 为了支持量子计算的近期应用,一种新的计算范式——量子-经典云——已经出现,其中量子计算机(QPU)通过共享云基础设施与经典计算机(CPU)协同工作。在这项工作中,我们列举了量子-经典云平台的架构要求,并提出了一个用于对其运行时性能进行基准测试的框架。此外,我们还介绍了两个平台级增强功能,即参数编译和主动量子位重置,它们专门优化了量子-经典架构以支持变分混合算法,这是近期量子硬件最有前途的应用。最后,我们表明,将这两个功能集成到 Rigetti Quantum 云服务平台中可以显著改善控制算法运行时的延迟。
新兴的量子硬件为量子模拟提供了新的可能性。虽然大部分研究都集中在模拟封闭的量子系统上,但现实世界的量子系统大多是开放的。因此,开发能够有效模拟开放量子系统的量子算法至关重要。在这里,我们提出了一种自适应变分量子算法,用于模拟由林德布拉德方程描述的开放量子系统动力学。该算法旨在通过动态添加运算符来构建资源高效的模拟,同时保持模拟精度。我们在无噪声模拟器和 IBM Q 量子处理器上验证了算法的有效性,并观察到与精确解的良好定量和定性一致性。我们还研究了所需资源随系统规模和精度的变化,并发现了多项式行为。我们的结果表明,不久的将来的量子处理器能够模拟开放量子系统。
噪声中型量子器件使得量子神经网络 (QNN) 的变分量子电路 (VQC) 得以实现。尽管基于 VQC 的 QNN 已在许多机器学习任务中取得成功,但 VQC 的表示和泛化能力仍需要进一步研究,尤其是在考虑经典输入的维数时。在这项工作中,我们首先提出了一种端到端 QNN,TTN-VQC,它由基于张量训练网络 (TTN) 的量子张量网络(用于降维)和用于函数回归的 VQC 组成。然后,我们针对 TTN-VQC 的表示和泛化能力进行误差性能分析。我们还利用 Polyak-Lojasiewicz 条件来表征 TTN-VQC 的优化属性。此外,我们对手写数字分类数据集进行了函数回归实验,以证明我们的理论分析是正确的。
然而,在任意低温下制备给定哈密顿量的吉布斯态并非易事 39,人们提出了各种方法,包括经典方法和量子方法 40–43,以在某些特定条件下制备吉布斯态。其中一些技术包括基于量子拒绝采样 44 、动力学模拟 45,46 和降维 47 的算法,但实现这些方法的量子资源开销成本非常高,因此不适合在近期的量子设备上执行。为了在 NISQ 设备中找到量子算法的应用,底层量子电路应该是浅的,具有较低的电路深度和较少的量子比特数。变分量子算法 (VQA) 48 就是这样一类遵循基于变分原理的启发式方法的混合量子经典算法,由于它们在具有浅量子电路的 NISQ 设备上实现,近年来 49–54 非常流行。为了使用 VQA 在 NISQ 设备上准备量子吉布斯态,已经提出了几种方法。55–60 在这项工作中,我们采用了 Wang 等人的方法。39 其中,在量子电路上准备吉布斯态的损失函数涉及熵的泰勒级数截断,并且已被证明可以为给定的汉密尔顿量准备保真度超过 99% 的吉布斯态。系统的物理汉密尔顿量是未知的,实际上在此协议中是不必要的。人们只能访问任意一组厄米算子的期望值。原则上,使用形式主义可以生成与这种任意甚至不完整的平均测量集一致的最小偏差量子态,但在本报告中,我们使用 IC 集进行测试和验证,希望能够提供用于采样的未知纯量子态的近乎精确的重建。这是通过构建一个厄米矩阵 H 来实现的,该矩阵由拉格朗日乘数参数化。后者充当吉布斯态的代理汉密尔顿量,吉布斯态代表量子系统状态的断层扫描重建。本文提出的混合量子-经典断层扫描协议涉及浅参数化量子电路的应用,可在当前到近期的量子硬件上进行实验实现。这本身就比某些其他断层扫描协议 11-14 更有优势,因为经过优化,状态可以直接在量子
图神经网络(GNN)在广泛的应用领域中已显示出良好的效果。大多数 GNN 实证研究直接将观察到的图作为输入,假设观察到的结构完美地描述了节点之间准确和完整的关系。然而,现实世界中的图不可避免地是有噪声的或不完整的,这甚至会降低图表示的质量。在本文中,我们从信息论的角度提出了一种新的变分信息瓶颈引导的图结构学习框架,即 VIB-GSL。VIB-GSL 是首次尝试推进图结构学习的信息瓶颈 (IB) 原理,为挖掘底层任务相关关系提供了更优雅、更通用的框架。VIB-GSL 学习一种信息丰富且压缩的图结构,以提炼出特定下游任务的可操作信息。 VIB-GSL 对不规则图数据推导变分近似,形成易处理的 IB 目标函数,有利于提高训练稳定性。大量实验结果表明 VIB-GSL 具有良好的有效性和鲁棒性。
变分量子算法是近期和未来容错量子设备模拟的前沿。虽然大多数变分量子算法只涉及连续优化变量,但有时可以通过添加某些离散优化变量来显著增强变分假设的表示能力,广义量子近似优化算法 (QAOA) 就是一个例子。然而,广义 QAOA 中的混合离散-连续优化问题对优化提出了挑战。我们提出了一种称为 MCTS-QAOA 的新算法,它将蒙特卡洛树搜索方法与改进的自然策略梯度求解器相结合,分别优化量子电路中的离散变量和连续变量。我们发现 MCTS-QAOA 具有出色的抗噪特性,并且在广义 QAOA 的具有挑战性的实例中优于先前的算法。
摘要。量子计算机机器学习的最新进展主要得益于两项发现。将特征映射到指数级大的希尔伯特空间中使它们线性可分——量子电路仅执行线性运算。参数移位规则允许在量子硬件上轻松计算目标函数梯度——然后可以使用经典优化器来找到其最小值。这使我们能够构建一个二元变分量子分类器,它比经典分类器具有一些优势。在本文中,我们将这个想法扩展到构建多类分类器并将其应用于真实数据。介绍了一项涉及多个特征图和经典优化器以及参数化电路的不同重复的系统研究。在模拟环境和真实的 IBM 量子计算机上比较了模型的准确性。
图 3:对于范围从 2 到 6 的量子比特,该图显示了在每一步优化中使用重建的量子态获得的 Hermitian 算子的 IC 集的真实期望值和生成的期望值之间的时期数的函数即均方误差 (MSE) 损失。