摘要 最近证明了非相对论量子公式可以从扩展的最小作用量原理 Yang (2023)。在本文中,我们将该原理应用于大质量标量场,并推导出标量场的波函数薛定谔方程。该原理通过考虑两个假设扩展了经典场论中的最小作用量原理。首先,普朗克常数定义了场需要表现出可观测的最小作用量。其次,存在恒定的随机场涨落。引入一种新方法来定义信息度量来衡量由于场涨落而产生的额外可观测信息,然后通过第一个假设将其转换为额外作用量。应用变分原理来最小化总作用量使我们能够优雅地推导出场涨落的跃迁概率、不确定关系和波函数的薛定谔方程。此外,通过使用相对熵的一般定义来定义场涨落的信息度量,我们得到了依赖于相对熵阶数的波函数广义薛定谔方程。我们的结果表明,扩展的最小作用原理既可用于推导非相对论量子力学,也可用于推导相对论量子标量场理论。我们期望它可以进一步用于推导非标量场的量子理论。
牛顿运动定律,牛顿力学的缺点。拉格朗日力学:约束、广义坐标、虚功原理、达朗贝尔原理、保守和非保守系统的拉格朗日运动方程、达朗贝尔原理的拉格朗日方程、拉格朗日公式的应用。汉密尔顿力学:广义动量和循环坐标、汉密尔顿原理和拉格朗日方程、汉密尔顿运动方程、汉密尔顿公式的应用、鲁斯公式。中心力:两体中心力问题、轨道微分方程、开普勒定律、维里定理、中心力场中的散射、卢瑟福散射。变分原理和最小作用原理。正则变换。泊松和拉格朗日括号、刘维尔定理、相空间动力学、稳定性分析。汉密尔顿-雅可比方程和向量子力学的过渡。耦合振子。刚体动力学。非惯性坐标系。对称性、不变性和诺特定理。狭义相对论和相对论力学基础。四矢量公式。电动力学协变公式基础。
7 有限元法简介 145 7.1 简介 145 7.2 变分原理 147 7.2.1 功和补充功 147 7.2.2 应变能、补充应变能和动能 148 7.2.3 加权残值技术 149 7.3 能量泛函和变分算子 151 7.3.1 变分符号 153 7.4 控制微分方程的弱形式 153 7.5 一些基本能量定理 154 7.5.1 虚功的概念 154 7.5.2 虚功原理(PVW) 154 7.5.3 最小势能原理(PMPE) 155 7.5.4 Rayleigh-Ritz 方法 156 7.5.5 Hamilton 原理(HP) 156 7.6 有限元法 158 7.6.1 形函数 159 7.6.2 有限元方程的推导 162 7.6.3 等参公式和数值积分 164 7.6.4 数值积分和高斯求积 167 7.6.5 质量和阻尼矩阵公式 168 7.7 有限元法中的计算方面 171 7.7.1 影响 FE 解速度的因素 172 7.7.2 静态分析中的方程解 173 7.7.3 动态分析中的方程解 174 7.8 超收敛有限元公式 178 7.8.1 超收敛深杆有限元 179 7.9 谱有限元公式 182 参考文献 184
7 有限元法简介 145 7.1 简介 145 7.2 变分原理 147 7.2.1 功和补充功 147 7.2.2 应变能、补充应变能和动能 148 7.2.3 加权残值技术 149 7.3 能量泛函和变分算子 151 7.3.1 变分符号 153 7.4 控制微分方程的弱形式 153 7.5 一些基本能量定理 154 7.5.1 虚功的概念 154 7.5.2 虚功原理(PVW) 154 7.5.3 最小势能原理(PMPE) 155 7.5.4 Rayleigh-Ritz 方法 156 7.5.5 Hamilton 原理(HP) 156 7.6 有限元法 158 7.6.1形函数 159 7.6.2 有限元方程的推导 162 7.6.3 等参公式和数值积分 164 7.6.4 数值积分和高斯求积 167 7.6.5 质量和阻尼矩阵公式 168 7.7 有限元法中的计算方面 171 7.7.1 影响 FE 解速度的因素 172 7.7.2 静态分析中的方程解 173 7.7.3 动态分析中的方程解 174 7.8 超收敛有限元公式 178 7.8.1 超收敛深杆有限元 179 7.9 谱有限元公式 182 参考文献 184
我们提出了量子选择配置相互作用 (QSCI),这是一类混合量子经典算法,用于计算噪声量子装置上多电子哈密顿量的基态和激发态能量。假设可以在量子计算机上通过变分量子特征值求解器或其他方法准备近似基态。然后,通过在计算基础中对状态进行采样(这对于经典计算来说通常很难),可以识别出对再现基态很重要的电子配置。在经典计算机上,将这些重要配置所跨越的子空间中的哈密顿量对角化,以输出基态能量和相应的特征向量。可以类似地获得激发态能量。由于噪声量子装置仅用于定义子空间,因此结果对统计和物理错误具有鲁棒性,并且即使存在此类错误,所得的基态能量也严格满足变分原理。由于子空间中的显式特征向量是已知的,因此还可以估算出各种其他算子的期望值,而无需额外的量子成本。我们通过数值模拟验证了我们的提议,并在一个 8 量子比特分子汉密尔顿量的量子设备上进行了演示。通过利用具有几十个量子比特的量子设备,并借助高性能经典计算资源进行对角化,所提出的算法有可能解决一些具有挑战性的分子问题。
I. 引言基于深度神经网络 (DNN) 的人工智能 (AI) 技术的飞速发展,通过分析用户的生理数据 [1],如脑电图 (EEG) [2] 和肌电图 (EMG) [3],实现了人机界面 (HMI) 包括脑机界面 (BCI) 的实用化。然而,此类生物信号很容易根据每个受试者的生物状态而变化 [4]。因此,典型的 HMI 系统通常需要频繁校准。为了解决这个问题,已经提出了采用领域泛化和迁移学习的主题不变方法 [5]–[11],以减少 HMI 系统的用户校准。在本文中,我们首次在文献中将一个新兴的框架“量子机器学习 (QML)” [12]–[31] 引入到生物信号处理应用中,展望了未来的量子霸权时代 [32],[33]。与传统数字计算机相比,量子计算机可以利用叠加和纠缠等量子机制实现计算效率更高的信号处理,不仅在执行时间方面,而且在能耗方面。在过去的几年中,一些供应商已经成功制造出商用量子处理单元 (QPU)。例如,IBM 在 2021 年发布了 127 量子比特 QPU,并计划到 2023 年生产 1121 量子比特 QPU。因此,QML 广泛应用于实际应用已不再遥远。最近,提出了基于变分原理 [34]–[37] 的混合量子-经典算法来处理量子噪声。本文的主要贡献总结如下:
摘要 我们证明了非相对论量子力学的公式可以从一个扩展的最小作用量原理中推导出来。这个原理可以看作是经典力学最小作用量原理的扩展,因为它考虑了两个假设。首先,普朗克常数定义了一个物理系统在其动力学过程中为可观测所需表现出的最小作用量。其次,沿经典轨迹存在恒定的真空涨落。我们引入了一种新方法来定义信息度量来测量由于真空涨落引起的额外可观测性,然后通过第一个假设将其转换为额外作用量。应用变分原理来最小化总作用量使我们能够恢复位置表象中的基本量子公式,包括不确定性关系和薛定谔方程。在动量表象中,可以应用同样的方法得到自由粒子的薛定谔方程,而对于具有外部势的粒子仍需要进一步研究。此外,该原理在两个方面带来了新的结果。在概念层面,我们发现真空涨落的信息度量是玻姆量子势的起源。尽管二分系统的玻姆势不可分,但底层的真空涨落是局部的。因此,玻姆势的不可分性并不能证明两个子系统之间存在非局部因果关系。在数学层面,使用更一般的相对熵定义量化真空涨落的信息度量会得到一个取决于相对熵阶数的广义薛定谔方程。扩展的最小作用原理是一种新的数学工具。它可以应用于推导其他量子形式,例如量子标量场论。
第一单元:粒子力学。粒子系统力学、约束、达朗贝尔原理和拉格朗日方程、速度相关势和耗散函数拉格朗日公式的简单应用第 1 章。第 1、2、3、4、5 和 6 节。汉密尔顿原理,变分法的一些技巧。从汉密尔顿原理推导出拉格朗日方程。守恒定律和对称性、能量函数和能量守恒第 2 章。第 1、2、3、5 和 6 节第二单元:简化为等效的一体问题。运动方程和一阶积分、等效一维问题和轨道分类、轨道微分方程和可积幂律势、闭合轨道条件(伯特兰定理)、开普勒问题力的平方反比定律、开普勒问题中的时间运动、有中心力场中的散射。第 3 章。第 1、2、3、5、6、7 和 8 节勒让德变换和哈密顿运动方程。循环坐标、从变分原理推导哈密顿运动方程、最小作用量原理。章:7,节:1、2、3、4 和 5。第三单元:正则变换方程、正则变换示例、谐振子、泊松括号和其他正则不变量、运动方程、无穷小正则变换、泊松括号公式中的守恒定理、角动量泊松括号关系。章:8,节:1、2、4、5、6 和 7。汉密尔顿 - 汉密尔顿主函数的雅可比方程、作为汉密尔顿 - 雅可比方法的一个例子的谐振子问题、汉密尔顿 - 汉密尔顿特征函数的雅可比方程。作用 - 单自由度系统中的角度变量。章:9,节:1、2、3 和 5。教科书:经典力学 - H. Goldstein 参考书:经典力学 - JB Upadhayaya 经典力学 - Gupta, Kumar and Sharma
Peruzzo等人首先开发的变异量子eigensolver(或VQE)。(2014)近年来受到研究界的极大关注。它使用变分原理来计算哈密顿量的基态能量,这是量子化学和凝结物理学的核心问题。传统的计算方法由于这些多电子系统的指数增长电子波函数的精确建模而限制了其准确性。VQE可用于在多项式时间内对这些复杂的波函数进行建模,从而使其成为量子计算中最有希望的近期应用之一。一个重要的优点是,已证明变异算法对量子硬件中的噪声提出了一定程度的弹性。找到一条导航相关文献的途径已迅速成为一项压倒性的任务,许多方法有望改善算法的不同部分,但没有明确描述各种部分如何融合在一起。文献中也广泛讨论了该算法的潜在实际优势,但结论有所不同。尽管有强大的理论基础表明了单个VQE组件的出色缩放,但研究指出,它们的各种前部因子可能太大而无法比常规方法达到量子计算优势。详细综述了该算法的所有不同组件。本评论旨在解散相关文献,以全面概述在算法的不同部分上取得的进展,并讨论VQE兑现其承诺的基本研究领域。这些包括在量子计算机上的汉密尔顿和波函数的表示,找到基态能量的优化过程,量子错误的后加工缓解措施以及建议的最佳实践。我们确定未来研究的四个主要领域:(1)减少所需电路重复的最佳测量方案; (2)许多量子计算机的大规模并行化; (3)克服大型系统优化过程中消失梯度的潜在外观的方法,以及优化量表所需的迭代次数
1. 简介 3 2. 量子自旋系统 3 2.1. 自旋和量子数 3 2.2. 可观测量 4 2.3. 状态 4 2.4. 狄拉克符号 5 2.5. 有限量子自旋系统 7 3. 附录:C ∗ -代数 13 3.1. C ∗ -代数 13 3.2. C ∗ -代数中的谱理论 14 3.3. 正元素 16 3.4. 表示 17 3.5. 状态 18 4. 有限和无限量子自旋系统的一般框架 21 4.1. 有限系统的动力学 21 4.2. 无限系统 24 5. Lieb-Robinson 界限 25 5.1.动力学的存在 30 6. 基态和平衡态 32 6.1. 基态 32 6.2. 热平衡、自由能和吉布斯态的变分原理 33 6.3. Kubo-Martin-Schwinger 条件 35 6.4. 能量-熵平衡不等式 36 7. 无限系统和 GNS 表示 40 7.1. GNS 构造 40 7.2. 无限系统的基态和平衡态 43 8. 对称性、激发谱和相关性 45 8.1. Goldstone 定理 46 8.2. 指数聚类定理 51 9. 附录:李群和李代数 56 9.1.李群和李代数的表示 57 9.2. SU(2) 的不可约表示 60 9.3. 表示的张量积 62 10. 四个例子 64 10.1. 例 1:各向同性的海森堡模型 64 10.2. 例 2:XXZ 模型 66 10.3. 例 3:AKLT 模型 66 10.4. 例 4:Toric Code 模型 67 11. 无失稳模型 68 11.1. AKLT 链 69 11.2. 具有唯一矩阵积基态的无失稳自旋链 77 11.3. 平移不变矩阵积态的一些性质 78 11.4. 交换性质。 82