Loading...
机构名称:
¥ 12.0

Peruzzo等人首先开发的变异量子eigensolver(或VQE)。(2014)近年来受到研究界的极大关注。它使用变分原理来计算哈密顿量的基态能量,这是量子化学和凝结物理学的核心问题。传统的计算方法由于这些多电子系统的指数增长电子波函数的精确建模而限制了其准确性。VQE可用于在多项式时间内对这些复杂的波函数进行建模,从而使其成为量子计算中最有希望的近期应用之一。一个重要的优点是,已证明变异算法对量子硬件中的噪声提出了一定程度的弹性。找到一条导航相关文献的途径已迅速成为一项压倒性的任务,许多方法有望改善算法的不同部分,但没有明确描述各种部分如何融合在一起。文献中也广泛讨论了该算法的潜在实际优势,但结论有所不同。尽管有强大的理论基础表明了单个VQE组件的出色缩放,但研究指出,它们的各种前部因子可能太大而无法比常规方法达到量子计算优势。详细综述了该算法的所有不同组件。本评论旨在解散相关文献,以全面概述在算法的不同部分上取得的进展,并讨论VQE兑现其承诺的基本研究领域。这些包括在量子计算机上的汉密尔顿和波函数的表示,找到基态能量的优化过程,量子错误的后加工缓解措施以及建议的最佳实践。我们确定未来研究的四个主要领域:(1)减少所需电路重复的最佳测量方案; (2)许多量子计算机的大规模并行化; (3)克服大型系统优化过程中消失梯度的潜在外观的方法,以及优化量表所需的迭代次数

物理学报告了变异量子本质量

物理学报告了变异量子本质量PDF文件第1页

物理学报告了变异量子本质量PDF文件第2页

物理学报告了变异量子本质量PDF文件第3页

物理学报告了变异量子本质量PDF文件第4页

物理学报告了变异量子本质量PDF文件第5页