基于反铁电的介电电容器因其出色的储能性能和在收集脉冲功率方面的非凡灵活性而备受关注。尽管如此,迄今为止,尚未阐明与储能过程固有耦合的原位原子级结构演化途径,以最终理解其机制。本文报道了反铁电PbZrO 3 在存储电子束照射的能量过程中的时间和原子分辨率结构相演变。通过采用最先进的负球差成像技术,本文介绍的定量透射电子显微镜研究阐明了与晶胞体积变化和极化旋转相关的极性氧八面体的层次演化解释了逐步的反铁电到铁电相变。特别是,在动态结构研究过程中建立了一种非常规的铁电类别——具有独特摆线极化序的铁电畸变相。通过阐明原子尺度相变途径,该研究的结果为探索具有非极性到极性相变的储能材料中的新型铁致畸变相开辟了一个新领域。
ONDCP 是在禁毒战争期间成立的——禁毒战争是近 40 年来美国禁毒政策常用的术语;然而,ONDCP 已经与该术语划清界限。虽然过去吸毒主要被视为刑事司法问题,但现在人们更普遍地将其视为刑事司法和公共卫生问题。与这种转变相呼应的是,随着时间的推移,联邦禁毒支出增加了用于预防和治疗的资金比例,减少了用于执法和拦截的资金比例。近年来,用于减少供应活动(国内执法、国际行动和拦截)的禁毒支出比例与用于减少需求活动(治疗和预防)的比例相对相似。
本文的主要目的是通过评估人工智能对智慧旅游发展的影响来填补这一空白。本研究将首先讨论智慧旅游方面的文献以及人工智能对旅游业发展的贡献,这些贡献基于早期的学术成果和实际意义。在方法论方面,本文将以文献综述为指导,并对研究结果进行批判性评估。除此之外,本研究还将提出一个模型,定量分析人工智能对智慧旅游的影响。在建议的模型中,相关的经济、技术、社会和环境变量包括使用人工智能的智慧旅游创造的总收入、技术改进的贡献、弱势群体(如老年人、残疾人、孕妇等)在人工智能应用方面对旅游活动的社会包容程度,以及与向智慧旅游转变相平行的环境恶化程度。
尽管平台工作人员一直在高度不稳定的条件下,经济回报率紧张,但共同的19日大流行揭示了当前社会经济系统的固有不平等。在大流行期间被认为是“必不可少的”,在过去的几年中,对从事按需应用程序或从事工作的平台(例如乘车,家庭工作,美容服务,美容服务,食品送货服务等工作的人)产生了毁灭性的影响。几家平台公司与印度的工人互动,声称他们不是雇员,而是这样的工人“独立承包商”,尽管对他们类似于传统的就业合同,但对他们进行了重大控制。在变相的就业关系中,关于此类工人是真正独立还是仅仅被错误分类的激烈争论。
摘要 旋转唇形密封件因其多种优良性能而被广泛应用于飞机公用系统中,其可靠性评估受到越来越多的关注。提出一种基于时变相关分析的可靠性评估方法。采用时变Copula函数建立旋转唇形密封件两项性能指标泄漏率和摩擦扭矩之间的依赖关系,以多项式表示时变参数,并采用有效的Copula选择方法选取最优Copula函数。基于贝叶斯方法进行参数估计,基于蒙特卡罗方法计算全寿命期间的可靠度。对旋转唇形密封件进行退化试验,并通过试验数据对所提模型进行验证。基于试验数据确定了最优Copula函数和多项式的最优阶数。结果表明,该模型可有效评估旋转唇形密封件的可靠性,且能获得较好的拟合优度。 � 2019 中国航空航天学会。由 Elsevier Ltd. 制作和托管。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。
摘要:合成微生物群落在生物技术中的价值因其承担比单一培养更复杂的代谢任务的能力而受到关注。但是,通常需要对应变相互作用,生产率和稳定性进行彻底的了解,以优化生长并扩大培养。定量蛋白质组学可以为微生物菌株如何适应生物制造的变化条件提供宝贵的见解。但是,当前的工作流和方法不适用于应变比是动态的简单人工共培养系统。在这里,我们使用包含两个成员Azotobacter Vinelandii和Synechococcus Elongatus的示例系统建立了共培养蛋白质组学的工作流程。研究了影响共培养蛋白质组学定量准确性的因素,包括肽物理化学特征,例如分子量,等电点,疏水性和动态范围,以及与蛋白质鉴定有关的因素,例如蛋白质体大小和种群之间的共享肽。在蛋白质和细胞水平上评估了基于光谱计数和强度的不同定量方法。我们提出了一种名为“ LFQRATIO”的新归一化方法,以反映两种不同细胞类型的相对贡献,这些细胞类型从共培养过程中出现的细胞比率变化出现。lfqratio可以应用于实际共培养蛋白质组学实验,从而为每个菌株中定量蛋白质组变化提供准确的见解。关键字:微生物共培养,定量蛋白质组学,无标签定量,synechococcus,Azotobacter■简介
随着集成电路工艺的不断发展,锁相环 (PLL) 频率源技术被广泛应用于各类传感器,如用于图像传感器的高精度时钟发生器[1–4]。近年来,得到广泛研究的高精度传感器,特别是植入式医疗传感器和高精度图像传感器,要求低功耗、大输出功率、低相位噪声[5]。作为传感器的关键模块,PLL 的性能在一定程度上决定了传感器的性能。电荷泵锁相环 (CPPLL) 因其低相位噪声、变相位差和高频工作等特点而成为 PLL 的代表性结构[6–8]。已经发表了许多关于 CPPLL 的研究成果,如[9–14]。在[11]中,采用 65nm Si CMOS 工艺实现了 CPPLL。提出的 CPPLL 采用了一种新型超低压电荷泵。所提出的CPPLL工作频率为0.09 GHz~0.35 GHz,在1 MHz频偏处相位噪声为-90 dBc/Hz,电路功耗约为0.109 mW。[9]提出了一种基于GaAs pHEMT的PLL,采用多种电路技术组合对所提出的PLL进行优化,降低相位噪声,提高运行速度。所提出的PLL工作频率约为37 GHz,在1 MHz频偏处相位噪声为-98 dBc/Hz,电路功耗约为480 mW。从以上参考文献可以看出,GaAs pHEMT具有高增益、优异的功率特性、低噪声的特点[15 – 17]。采用GaAs pHEMT工艺可以实现低噪声、更高输出功率的PLL,但基于GaAs pHEMT工艺的电路在实现更高频率的同时引入了较大的功耗,而基于GaAs pHEMT工艺的CPPLL设计存在诸多困难。另外,CPPLL的设计需要在相位噪声、功耗、面积、工艺等性能问题上做出妥协。因此,本文提出了一种基于0.15μm GaAs的改进结构CPPLL。
2021年9月2日,贝纳黛特·华雷斯·阿菲斯女士副管理人生物技术监管服务4700 River Rd,第98单元,MD 20737,亲爱的Bernadette Juarez女士:几个月前,我们已从生物技术监管服务(BRS)的确认过程(我们已经允许了一名基因(BRS),以便我们曾经有过一定的基因(BRS)。 20-324-01CR)。 但是,该请求被BRS拒绝,因为马铃薯是四倍体作物,我们的基因组编辑的马铃薯具有两个基因编辑,即使我们仅明确使用了一种类型的指导RNA(GRNA)。 由于我们的土豆不符合获得豁免状态的标准,尤其是单个基因编辑的存在,因此BRS建议我们应该提交我们要求进行监管状态审查(RSR)的请求。 因此,我们要求BRS评估使用基因组编辑技术开发的马铃薯线进行监管状态审查。 我们正在提供这封信中的信息,这可以帮助BRS对我们的基因组编辑的马铃薯线做出决定。 验证我们请求的基本信息包括以下内容:我们使用靶向单个GRNA(SGRNA)使用CAS9-核糖核蛋白(RNP)递送系统将马铃薯原生质体转染,以编辑STPPO2基因(编码多酚氧化酶,PPO),与含有糖果的棕色褐变相关联。 在获得的近110个独立的基因组编辑的土豆线中,我们根据PPO活性水平和褐变程度下降选择了2种褐变抑制的马铃薯(BSP)线(#38和#165)。 1。 2。 3。 4。贝纳黛特·华雷斯·阿菲斯女士副管理人生物技术监管服务4700 River Rd,第98单元,MD 20737,亲爱的Bernadette Juarez女士:几个月前,我们已从生物技术监管服务(BRS)的确认过程(我们已经允许了一名基因(BRS),以便我们曾经有过一定的基因(BRS)。 20-324-01CR)。但是,该请求被BRS拒绝,因为马铃薯是四倍体作物,我们的基因组编辑的马铃薯具有两个基因编辑,即使我们仅明确使用了一种类型的指导RNA(GRNA)。由于我们的土豆不符合获得豁免状态的标准,尤其是单个基因编辑的存在,因此BRS建议我们应该提交我们要求进行监管状态审查(RSR)的请求。因此,我们要求BRS评估使用基因组编辑技术开发的马铃薯线进行监管状态审查。我们正在提供这封信中的信息,这可以帮助BRS对我们的基因组编辑的马铃薯线做出决定。验证我们请求的基本信息包括以下内容:我们使用靶向单个GRNA(SGRNA)使用CAS9-核糖核蛋白(RNP)递送系统将马铃薯原生质体转染,以编辑STPPO2基因(编码多酚氧化酶,PPO),与含有糖果的棕色褐变相关联。在获得的近110个独立的基因组编辑的土豆线中,我们根据PPO活性水平和褐变程度下降选择了2种褐变抑制的马铃薯(BSP)线(#38和#165)。1。2。3。4。用于开发BSP系的方法不包括将任何异物DNA序列引入植物基因组中。相反,遗传修饰是由靶向DNA断裂的自然细胞修复过程中基本对(BP)缺失产生的,而没有外部提供的DNA修复模板。我们提出了两条BSP线,#38和#165,它们都是四倍体,在目标位点的STPPO2基因的四个等位基因中具有某些删除,即第38行中的两个BP删除和第165行中的四个BP删除。我们设计了SGRNA以专门针对STPPO2基因。此后,我们进行了原生质体转染以验证SGRNA。尽管STPPO属于多基因家族,但基因编辑仅在STPPO2中发生。在目标序列中均未修改其他ISO基因。除了被抑制的褐变外,获得的BSP系与非编辑的土豆没有差异。我们没有找到任何证据表明BSP线比控制线更容易受到害虫攻击。我们提供了与我们的工作相关的所有信息,以支持我们的应用程序,以对基因组编辑的BSP线进行监管状态审查。但是,如果您需要任何其他信息来协助审核程序,请告诉我。
拓扑量子计算 (TQC) 是一种量子计算方法,旨在通过利用由非阿贝尔任意子组成的非局部自由度的拓扑属性来最小化硬件层面的退相干 [1-3]。后者是奇异的准粒子激发,具有非平凡的交换统计数据,用辫子群的多维表示来描述。非阿贝尔任意子集合嵌入在退化基态流形中,这允许非局部存储量子信息并通过编织实现幺正变换来处理它。在所有非阿贝尔任意子中,马约拉纳零能量模式 (MZM) 是最有希望用于 TQC 开发的模式 [4-8],因为它们是凝聚态系统中最可行的模式。过去十年,开创性的实验确实在多个不同平台上为它们的存在提供了强有力的证据,如近邻半导体纳米线[9-12]、磁性吸附原子链[13,14]、拓扑超导体内的涡旋[15,16]、平面约瑟夫森结[17,18]和近邻量子自旋霍尔边缘[19,20]。基于马约拉纳量子计算机的构建块是马约拉纳量子比特,由四个马约拉纳零点模型组成。通过物理编织这些马约拉纳零点模型,可以实现所有单量子比特 Clifford 门 [21-23]。这些门受到拓扑保护,因为它们的结果完全取决于 2+1 维空间中任意子绝热遵循的轨迹的拓扑。重要的是,一对 MZM 的编织可以通过多种方式实现,这些方式都等同于两个非阿贝尔任意子的物理交换 [ 24 – 30 ] 。事实上,通过考虑额外的 (混合的) 辅助马约拉纳粒子的存在,我们可以通过适当调整不同 MZM 之间的成对耦合 [ 31 , 32 ] 或通过执行顺序射影宇称测量 [ 8 , 33 – 38 ] 来进行编织。非 Clifford 操作(如 T 门)无法通过马约拉纳编织实现,并且必然依赖于没有拓扑保护的实现,并且需要额外的纠错方案(如魔法态蒸馏)[ 23 , 39 ] 。为了实现通用量子计算,单量子比特门必须补充纠缠门,如 CNOT 门。遗憾的是,这种两量子比特 Clifford 门无法在可扩展架构中仅通过马约拉纳编织操作实现 [22, 40]。基于测量的方法使我们能够克服这个问题,通过对(联合)马约拉纳奇偶性进行高保真投影测量来实现 CNOT 门 [8, 35, 41 – 44]。然而,尽管基于测量的 TQC 已被证明对未来开发完全可扩展的拓扑量子计算机非常有价值,但所需的测量协议仍然是一项艰巨的挑战 [35,45,46]。因此,目前,最好设计和描述替代方案,这些方案不依赖于高保真测量,但仍允许稳健地纠缠不同的拓扑量子位。在这项工作中,我们提出了一种基于完整方法的 CNOT 门的无测量实现。完整量子计算的关键思想是利用非阿贝尔几何相在底层哈密顿量的退化特征空间上实现幺正运算 [47]。当系统参数沿着参数空间中保持退化的闭环进行调整时,就会出现这些规范不变相。这种方法相当通用,已经在非拓扑量子计算方案中成功运用 [47-49]。因此,在 TQC 中使用完整技术也很有意义。事实上,马约拉纳粒子的编织过程本身可以解释为一个完整的过程,其中系统遵循成对马约拉纳粒子耦合的三维参数空间中特定的、拓扑保护的环路 [8, 31]。完整的编织描述的优点是它可以很容易地推广,既可以通过考虑具有不同拓扑结构的环路来实现,也可以通过考虑具有不同拓扑结构的环路来实现。