推荐系统已成为将人们与信息联系起来的重要工具。稀疏,复杂且快速增长的数据为传统推荐算法带来了新的挑战。为了克服这些挑战,已经提出了各种基于深度学习的建议算法。其中,基于变异的自动编码器(VAE)的推荐方法脱颖而出。vae s基于一个可信的概率框架,该框架适用于数据稀疏性,并且与其他基于深度学习的模型兼容以处理多模式数据。此外,vae s的深刻生成结构有助于以良好的方式进行贝叶斯推断。基于VAE的推荐算法已经引起了许多新型图形模型,并实现了有希望的性能。在本文中,我们进行了一项调查,以系统地总结了最近的基于VAE的推荐算法。总结了基于VAE的推荐算法的四个常用特征,并提出了基于VAE的建议算法的分类法。我们还确定了未来的研究指示,对推荐算法中VAE S的高级观点以及应用的应用,以激发推荐系统的VAE上的未来工作。
描述基于感觉运动节律的脑机接口 (SMR-BCI) 用于获取与运动意象相关的脑信号并将其转换为机器控制命令,从而绕过通常的中枢神经系统输出。选择最佳的外部变量配置可以最大限度地提高 SMR-BCI 在健康和残疾人士中的表现。当 BCI 的目标是在严格监管的实验室环境之外的日常环境中使用时,这种性能现在尤为重要。在这篇评论文章中,我们总结并批判性地评估了当前有关外部变量对 SMR-BCI 性能的影响的知识体系。在评估 SMR-BCI 性能与外部变量之间的关系时,我们将其广泛地描述为不太依赖于 BCI 用户并且源自用户之外的元素。这些因素包括 BCI 类型、干扰因素、训练、视觉和听觉反馈、虚拟现实和磁电反馈、本体感受和触觉反馈、脑电图 (EEG) 系统组装的细致程度和 EEG 电极的定位以及记录相关伪影等因素。在这篇评论文章的最后,提出了关于外部变量对 SMR-BCI 性能影响的研究未来发展方向。我们相信,我们的评论对学术 BCI 科学家和开发人员以及在 BCI 领域工作的临床专业人员以及 SMR-BCI 用户都具有价值。
孔隙压力是钻孔设计中的重要数据,其准确的预测对于确保钻孔安全性和提高钻井效率是必要的。在形成特定的结构和岩性时,预测孔隙压力的传统方法受到限制。在本文中,使用机器学习算法和有效应力定理来建立岩石物理参数和孔隙压力之间的转换模型。本研究收集了三口井的数据。Well 1有881个用于模型训练的数据集,Wells 2和3具有538和464个数据集用于模型测试。在本文中,选择了支持向量机(SVM),随机森林(RF),极端梯度提升(XGB)和多层感知器(MLP)作为孔隙压力建模的机器学习算法。In addition, this paper uses the grey wolf optimization (GWO) algorithm, particle swarm optimization (PSO) algorithm, sparrow search algorithm (SSA), and bat algorithm (BA) to establish a hybrid machine learning optimization al- gorithm, and proposes an improved grey wolf optimization (IGWO) algorithm.IgWO-MLP模型通过使用5倍的交叉验证方法来获得训练数据,从而获得了最小根平方误差(RMSE)。对于井2和3井中的孔隙压力数据,SVM,RF,XGB和MLP的确定系数(R 2)为0.9930和0.9446、0.9943和0.9943和0.9472、0.9472、0.9945和0.9945和0.9488、0.9949、0.9949、0.9949和0.9949和0.9574。MLP在训练和测试数据上都达到了最佳性能,MLP模型显示出高度的概括。©2023作者。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.表明IGWO-MLP是孔隙压力的极好预测指标,可用于预测孔隙压力。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
摘要:贝尔的定理意味着,使用隐藏变量的量子力学的完成(即,所有可观察物的先前存在值)在爱因斯坦的意义上都必须是非本地的。这通常表明对隐藏变量的了解将允许超光通信。可以预期这种超亮信信号传导,类似于首选参考框架的存在。但是,在这里我们提供了一个协议,该协议允许了解隐藏变量的知识与她自己的因果关系通信,而无需超光信号传导。也就是说,这种知识将与因果关系矛盾,而无意义的相对论理论的有效性。我们提出绕过悖论的方式,即使状态不在状态不改变其值也可能会改变其值,这意味着在Bohmian力学中禁止及时向后发信号。
离散结构在程序语言建模和软件工程等应用中起着重要作用。当前预测复杂结构的方法通常会以某些牺牲性不可思议的方式考虑自回归模型的障碍。基于能量的模型(EBM)为建模这种分布提供了一种更加灵活,更强大的方法,但需要分区函数估计。在本文中,我们提出了芦荟,这是一种用于学习条件和无条件eBM的新算法,用于离散结构化数据,其中使用学习的采样器来估算参数梯度,以模拟本地搜索。我们表明,能量函数和采样器可以通过新的变化形式的功率迭代形式进行有效训练,从而在灵活性和障碍性之间实现了更好的权衡。在实验上,我们表明学习本地搜索会导致具有挑战性的应用程序领域的显着改善。最重要的是,我们提出了一种用于软件测试的能量模型指导的绒毛,该模型与Libfuzzer(如Libfuzzer)具有可比性的性能。
8 结点放置策略 9 8.1 手动方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 8.5 基于消除趋势的方法 . ... . ...
全脑关联研究 (BWAS) 将个体的表型特征差异与大脑结构和功能的测量结果关联起来,在过去 30 年中已成为连接心智和大脑的主要方法。单变量 BWAS 通常分别测试数万到数十万个大脑体素,而多变量 BWAS 则将跨大脑区域的信号整合到预测模型中。单变量 BWAS 存在许多问题,包括缺乏能力和可靠性,以及无法解释分布式神经回路中嵌入的模式级信息 1–4 。多变量预测模型解决了许多这些问题,并为提供基于大脑的行为和临床状态及特征测量提供了巨大希望 2,3 。在他们最近的论文 4 中,Marek 等人在三个大型神经影像数据集中评估了样本量对单变量和多变量 BWAS 的影响,并得出“BWAS 的可重复性需要数千个个体的样本”的总体结论。我们赞赏他们的全面分析,并且我们同意:(1) 进行单变量 BWAS 时需要大量样本,(2) 多变量 BWAS 会显示出更大的效应,因此更有说服力。Marek 等人 4 发现,多变量 BWAS 提供的样本内关联被夸大了,除非纳入数千名参与者,否则通常无法复制(即没有说服力)。这意味着发现样本的效应大小估计必然被夸大了。然而,我们区分了效应大小估计方法(样本内与交叉验证)和样本(发现与复制),并表明,通过适当的交叉验证,Marek 等人 4 在发现样本中报告的样本内膨胀可以完全消除。通过额外的分析,我们证明,在某些情况下,高质量数据集中的多变量 BWAS 效应可以用小得多的样本量复制。具体而言,将标准多元预测算法应用于人类连接组计划中的功能连接,在 6 种表型中的 5 种测试样本量为 75-500 的情况下产生了可复制的效果(图 1)。这些分析仅限于相对高质量数据集中选定的表型数量(使用单个扫描仪在年轻成年人群中测量),不应过度概括。然而,他们强调,样本量要求的关键决定因素是大脑-表型关系的真实效应大小,并且通过适当的内部验证,可以对中等规模的研究进行适当的效应大小估计和足够大的效应。Marek 等人 4 通过在“发现样本”中训练各种多元模型来评估多元 BWAS 中的样本内效应大小膨胀
摘要。天气对农作物的生长,发育和产量有深远的影响。本研究涉及天气参数用于甘蔗产量预测的使用。机器学习技术(例如K-最近的邻居(KNN)和随机森林模型)已用于甘蔗产量预测。天气参数,即最高温度和最低温度,降雨,早晨和晚上相对湿度,阳光小时,蒸发以及甘蔗产量被用作输入变量。诸如R 2,均方根误差(MSE),平均绝对误差(MAE),均方根误差(RMSE),平均绝对百分比误差(MAPE)之类的性能指标已用于选择预测作物产量的最佳模型。在模型中,根据高R 2和最小误差值选择随机森林算法作为最佳拟合。结果表明,在傍晚的天气变量中,降雨和相对湿度对甘蔗产量有重大影响。
本文介绍了Parrot,这是一种LLM服务系统,侧重于基于LLM的应用程序的端到端体验。Parrot提出了语义变量,这是将应用程序级知识暴露于公共LLM服务的统一的抽象。语义变量注释请求提示符中的输入/输出变量,并在连接多个LLM请求时创建数据管道,从而提供了一种编程LLM应用程序的NATU-ralal方法。将语义变量暴露于公共LLM服务允许其执行惯例数据流分析,以发现多个LLM请求之间的相关性。这种相关性为基于LLM的应用程序的端到端性能打开了一个全新的优化空间。广泛的评估表明,鹦鹉可以为流行的LLM应用程序的流行和实际用例实现高度改进。
全球气候模型(GCM)是模拟气候演变并评估气候变化影响的主要工具。但是,它们通常以粗糙的空间分解运行,从而限制了它们在繁殖局部规模现象方面的准确性。利用深度学习的统计缩减方法通过近似粗略变量的局部尺度气候场来解决此问题,从而实现了区域GCM的投影。通常,感兴趣的不同变量的气候场是独立缩小的,从而违反了互连变量之间的基本物理特性。本研究研究了此问题的范围,并通过温度的应用为引入多变量硬约束的框架奠定了基础,该框架可以保证与降低气候变量的群体之间的身体关系。