1医学科学3391a/b:真实与含义高吞吐量实验的生物医学大数据设计以及对所得大数据集的分析,安装和使用标准的生物信息学程序,收集来自私人和公共资源的清洁数据集,探索性和分析分析的执行和分析。批判性思维,开放科学,数据共享和可再现的分析以及获得实践技能的获取将是普遍的主题。(50个单词)抗议:医学生物信息学3100A/b,计算机科学4461A/b。先决条件:生物化学2280a;生物学2581a/b;生物学2244a/b或统计科学2244a/b。额外的信息:混合课程,1个讲座小时,1个实验室/教程小时,1小时在线教学。课程体重:0.5课程学习成果:成功完成本课程后,学生将能够:
(苏黎世,2024年2月21日),由Paco Laveille博士和苏联化学系的Christophe Coperet教授领导的开创性项目在苏黎世Eth Eth eTh eTh Zurich的Applied Biosciences领导,这已经在可持续燃料和化学生产方面取得了进步,这要归功于开发催化剂的新技术。利用该项目中的机器人技术和AI,Copéret的团队使用较便宜的金属(例如铁,铜,钴)开发了有效的催化剂,并结合了其他元素。这项研究使催化剂的设计和生产能够在AI的帮助下提供可再现的数据。脱离的催化剂突破不仅会填补可持续能源部门反应中的现有空白,而且还会为该领域的更先进的研究带来前进。/web/2024/08-240221-59克服抗性白血病的免疫疗法
AXP®II系统是一种脐带血处理系统,用于实验室使用,并结合由热生成提供的特定兼容的单利分离套件。AXP II系统允许在封闭和无菌的环境中快速,自动化和可再现的脐带血分离。该过程首先将脐带血转移到加工袋集中,然后小心地将其放置在AXP设备中以进行后续离心。AXP设备旨在适合大多数标准的血库离心机桶,从而使多达六个样品并发处理。在离心过程中,脐带血分层和分开的成分。具体来说,红细胞(RBC)被定向到一个单独的无菌袋中,饲养单核细胞(MNC)富层的Buffy Coat熟练层熟练地将其定向到一个单独的无菌冷冻袋中,而血浆仍保留在原始处理袋中。
运动学一致性总膝关节置换术(KA-TKA)旨在恢复自然的肢体比对和关节线倾斜,从而提高患者满意度。限制的KA-TKA(RKA-TKA)解决了异常的膝盖解剖学,并试图在安全对齐边界内复制自然解剖结构。这项研究引入了一种新型的设备和技术,该技术和技术可以无需计算机辅助手术(CAS)即可进行RKA-TKA。新设备允许精确的软骨厚度测量和截骨角度的调整,从而促进准确的比对。提出了一种用于胫骨截骨术的高跟力技术,提供了一种可再现的方法来确定截骨术的体积和角度。这些创新使KA和RKA-TKA在任何手术环境中都可行,避免了与CAS相关的高成本和有限的可用性。
有人提出,通过在OpenSAF中应用算法以将编码的初级保健数据相结合,以便向英国生物银行提供衍生的健康结果,可以通过OpenSAFLELIES中使用算法来满足英国生物银行的需求(以及其他同意同意的需求)。然而,尽管应该为其生成可再现的代码和分析初级保健数据的算法而受到赞扬,但有很多原因为什么它无法满足英国生物库的需求,尤其是它将无法提供与原始数据相互作用,构成新颖的问题并找到新的问题并找到新的分析方法的能力。我们的大型研究人员社区已经使用现有数据表明了它的价值。撇开缺乏可扩展性的方法(例如,将大约20个出版的出版物与内部团队撰写,而不是由内部团队撰写的,而不是仅2022年全球外部研究人员根据英国生物库发表的200,000篇论文),这些限制包括:
本出版物是ICTAC工作组“热化学” 1期间1997年至1998年期间努力的结果。它涉及用于量热法和差异疗法分析的参考材料(缩写形式:RM)。它代表了IUPAC致命的“物理化学测量和标准”制作的两个先前的文档的更新版本:第一个发表于1974年的Pure and Applied Chemistry [1],第二本书在书籍中,标题为“重新认可的参考材料,用于实现物理学属性的实现” [2]。量热法和差分热分析与涉及物理,化学和生物学过程的广泛科学和技术研究领域相关。量热法通常会产生高度可再现的结果,但是由于测量系统的校准故障,可能是无法降低的。校准是每项热分析研究的基本要求。需要在测量仪器指示的值与正确值之间建立定义定义的关系。通过量化产生的
C. Sun,J。Orbik,C。Devin,B。Yang,A。Gupta,G。Berseth,S。Levine。 “完全自主的现实世界加强学习,并应用于移动操作。”在Corl,2022年。 B. Yang,D。Jayaraman,G。Berseth,A。Efros,S。Levine。 “形态 - 敏捷的视觉机器人控制。”在ICRA和RA-L中,2020年。 M. Lambeta,P。Chou,S。Tian,B。Yang,B。Maloon,V。Most,D。Stroud,R。Santos,A。Byagowi,G。Kammerer,D。Jayaraman,R。Calandra。 “数字:一种新型的设计,用于使用手持操作的低成本紧凑高分辨率触觉传感器。”在ICRA和RA-L中,2020年。 B. Yang,J。Zhang,V。Pong,S。Levine,D。Jayaraman。 “替换:一个可再现的低成本基准基准平台,用于机器人学习。”在ICRA,2019年。 T. Liao,G。Wang,B。Yang,R。Lee,K。Pister,S。Levine,R。Calandra。 “微生物的形态学和控制器的数据有效学习”。在ICRA,2019年。 B. Yang,G。Wang,R。Calandra,D。Contreras,S。Levine,K。Pister。 “学习微型机器人的灵活性和可重复使用的运动原语。”在ICRA和RA-L中,2018年。C. Sun,J。Orbik,C。Devin,B。Yang,A。Gupta,G。Berseth,S。Levine。“完全自主的现实世界加强学习,并应用于移动操作。”在Corl,2022年。B. Yang,D。Jayaraman,G。Berseth,A。Efros,S。Levine。 “形态 - 敏捷的视觉机器人控制。”在ICRA和RA-L中,2020年。 M. Lambeta,P。Chou,S。Tian,B。Yang,B。Maloon,V。Most,D。Stroud,R。Santos,A。Byagowi,G。Kammerer,D。Jayaraman,R。Calandra。 “数字:一种新型的设计,用于使用手持操作的低成本紧凑高分辨率触觉传感器。”在ICRA和RA-L中,2020年。 B. Yang,J。Zhang,V。Pong,S。Levine,D。Jayaraman。 “替换:一个可再现的低成本基准基准平台,用于机器人学习。”在ICRA,2019年。 T. Liao,G。Wang,B。Yang,R。Lee,K。Pister,S。Levine,R。Calandra。 “微生物的形态学和控制器的数据有效学习”。在ICRA,2019年。 B. Yang,G。Wang,R。Calandra,D。Contreras,S。Levine,K。Pister。 “学习微型机器人的灵活性和可重复使用的运动原语。”在ICRA和RA-L中,2018年。B. Yang,D。Jayaraman,G。Berseth,A。Efros,S。Levine。“形态 - 敏捷的视觉机器人控制。”在ICRA和RA-L中,2020年。M. Lambeta,P。Chou,S。Tian,B。Yang,B。Maloon,V。Most,D。Stroud,R。Santos,A。Byagowi,G。Kammerer,D。Jayaraman,R。Calandra。“数字:一种新型的设计,用于使用手持操作的低成本紧凑高分辨率触觉传感器。”在ICRA和RA-L中,2020年。B. Yang,J。Zhang,V。Pong,S。Levine,D。Jayaraman。 “替换:一个可再现的低成本基准基准平台,用于机器人学习。”在ICRA,2019年。 T. Liao,G。Wang,B。Yang,R。Lee,K。Pister,S。Levine,R。Calandra。 “微生物的形态学和控制器的数据有效学习”。在ICRA,2019年。 B. Yang,G。Wang,R。Calandra,D。Contreras,S。Levine,K。Pister。 “学习微型机器人的灵活性和可重复使用的运动原语。”在ICRA和RA-L中,2018年。B. Yang,J。Zhang,V。Pong,S。Levine,D。Jayaraman。“替换:一个可再现的低成本基准基准平台,用于机器人学习。”在ICRA,2019年。T. Liao,G。Wang,B。Yang,R。Lee,K。Pister,S。Levine,R。Calandra。 “微生物的形态学和控制器的数据有效学习”。在ICRA,2019年。 B. Yang,G。Wang,R。Calandra,D。Contreras,S。Levine,K。Pister。 “学习微型机器人的灵活性和可重复使用的运动原语。”在ICRA和RA-L中,2018年。T. Liao,G。Wang,B。Yang,R。Lee,K。Pister,S。Levine,R。Calandra。“微生物的形态学和控制器的数据有效学习”。在ICRA,2019年。B. Yang,G。Wang,R。Calandra,D。Contreras,S。Levine,K。Pister。 “学习微型机器人的灵活性和可重复使用的运动原语。”在ICRA和RA-L中,2018年。B. Yang,G。Wang,R。Calandra,D。Contreras,S。Levine,K。Pister。“学习微型机器人的灵活性和可重复使用的运动原语。”在ICRA和RA-L中,2018年。
未处理的新鲜心脏组织是研究心脏生物学和疾病的DNA甲基化模式的最佳组织材料。但是,很难获得新鲜组织。因此,以冷冻或福尔马林固定的,石蜡填充(FFPE)存储的组织被广泛用于DNA甲基化研究。尚不清楚存储条件是否改变心脏组织中的DNA甲基化。在这项研究中,我们比较了新鲜,冷冻和FFPE心脏组织的DNA甲基化模式,以研究储存方法是否影响DNA甲基化结果。,我们使用甲基化甲基化测定法获得了来自九个个体的新鲜,冷冻和FFPE组织中的全基因组甲基化水平。我们发现,与新鲜和冷冻的组织相比,在FFPE样品中,在FFPE样品中高估了21.4%的DNA甲基化水平,而5.7%被低估了。对DNA甲基化模式的重复分析显示了冷冻和FFPE组织的高可重现性(精度)。总而言之,我们发现冷冻和FFPE组织给出了可再现的DNA甲基化结果,并且冷冻和新鲜组织产生了相似的结果。
摘要 随着指挥和控制 (C2) 功能的范围和复杂性不断扩大,准确、可重复和可再现的实验方法的价值也随之增加。早期认识到这一优势促使美国陆军赞助和支持 C4ISR 系统工程和实验实验室 (C4ISR SE2L)。C4ISR SE2L 已运行一年多,并在实时、虚拟和建设性 (LVC) 环境中执行网络分析,包括网络的所有方面 - 传感器、通信和 C2。该实验室是在现实情况下试验 C2 的环境示例。可以在受控环境中模拟非理想条件并测量对应用程序的影响。实验室环境可以扩展以包括与现场系统的交互。C4ISR SE2L 已参与两次实地试验,目前正在规划第三次试验。C4ISR SE2L 的架构允许(事实上也鼓励)在实际测试范围内对多个系统、作战人员在环组件和实战组件(即车辆、传感器)进行实验。这些实验的结果目前正在纳入未来系统的规划、需求和概念工作中。本文介绍了 C4ISR SE2L 的理念和架构、实验设计、最近实验的结果以及如何在系统工程过程中使用这些结果。
Kevin Naidoo,Tomas Bruce-Chwatt,Tharindu Senapathi和Malcolm Hillebrand:多维自由能和加速量子库方法提供了通向甘油酶构象,电子,电子和反应机制的门户:化学研究的说法2021; doi:10.1021/acs.accounts.1c00477。影响因子:22.38 Simon Bray,Tharindu Senapathi,Christopher B. Barnett和BjörnGrüning:Galaxy中的直觉,可重现的高通量分子动力学:教程。化学信息学杂志2020,12(1),1-13; doi:10.1186/s13321-020-00451-6。影响因素:5.514 Tharindu Senapathi,Miroslav Suruzhon,Christopher B. Barnett,Jonathan Essex和Kevin J. Naidoo:桥梁可再现的高吞吐量自由能模拟的开放平台。化学信息与建模杂志2020,10(17),E3731-E3731; doi:10.1021/acs.jcim.0c00206。影响因子:4.549 Christopher B. Barnett,Tharindu Senapathi和Kevin J. Naidoo:在可变糖基化的MUC1抗原与AR20.5抗体的结合中构象作用。贝尔斯坦有机化学杂志2020,16(1),2540-2550; doi:10.3762/bjoc.16.206。影响因子:2.622