电致化学发光,也称为电化学发光 (ECL),由于其高灵敏度、极宽的动态范围以及对光发射空间和时间的出色控制,在各个分析领域引起了广泛关注。ECL 在体外检测中取得的巨大成功源于其将生物识别元素的选择性与 ECL 技术的灵敏度和可控性相结合的优势。ECL 被广泛应用于超灵敏检测生物分子的强大分析技术。在本综述中,我们总结了 ECL 在免疫传感方面的最新发展和应用。在此,我们介绍了传感方案和在不同领域的应用,例如生物标志物检测、基于珠子的检测、细菌和细胞分析,并对 ECL 免疫传感的新发展进行了展望。特别是,我们重点介绍了用于临床样本分析和医学诊断的基于 ECL 的传感分析以及为此目的而开发的免疫传感器。
超导量子器件具有出色的连接性和可控性,而半导体自旋量子位则以其持久的量子相干性、快速控制以及小型化和微缩潜力而脱颖而出。近几年来,在将超导电路和半导体器件结合成混合量子系统方面取得了显著进展,该系统受益于两种成分的物理特性。超导腔可以介导电子自由度(例如半导体芯片上单个电子的自旋)之间长距离的量子相干耦合,从而为量子器件提供必要的连接性。半导体量子点中的电子自旋已经达到了非常长的相干时间,并允许快速量子门操作并提高保真度。我们总结了描述超导-半导体混合量子系统的最新进展和理论模型,解释了这些系统的局限性,并描述了未来实验和理论的不同发展方向。
从 I on /I off 电流比、跨导、亚阈值斜率、阈值电压滚降和漏极诱导势垒降低 (DIBL) 等方面评估了一种新型栅极全场效应晶体管 (GAA-FET) 方案的可靠性和可控性。此外,借助物理模拟,全面研究了电子性能指标的缩放行为。将提出的结构的电气特性与圆形 GAA-FET 进行了比较,圆形 GAA-FET 之前已使用 3D-TCAD 模拟在 22 nm 通道长度下用 IBM 样品进行了校准。我们的模拟结果表明,与传统的圆形横截面相比,扇形横截面 GAA-FET 是一种控制短沟道效应 (SCE) 的优越结构,并且性能更好。2020 作者。由 Elsevier BV 代表艾因夏姆斯大学工程学院出版。这是一篇根据 CC BY 许可 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
开发了一种新型混合熔覆工艺,通过结合直接能量沉积 (DED) 和超声纳米晶体表面改性 (UNSM) 来控制内层金属熔覆层的力学性能。混合工艺允许操纵熔覆层的内部和外部力学性能,以获得所需的表面和体积性能。为了验证该方法的有效性,对 Inconel-718 熔覆层在 200 和 400 C 高温下进行了耐磨性试验,并证实耐磨性分别提高到 25.4% 和 14.4%。这项工作分析了 DED 工艺中有无 UNSM 处理的耐磨特性。所提出的方法是改变熔覆层内部力学性能的一种有前途的方法,具有很高的可控性和可重复性。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
当前的感知模型在很大程度上取决于资源密集型数据集,从而促使需要创新。通过从各种注释中构造图像输入来利用综合数据的最新进展,证明对下游任务有益。虽然先前的方法已单独解决了生成和感知模型,但首次降低了两者的谐调,从而解决了为感知模型生成有效数据的挑战。通过感知模型增强图像发生,我们引入了感知感知损失(P.A.损失)通过细分,提高质量和可控性。为了提高特定感知模型的性能,我们的方法通过提取和利用感知意识来定制数据(P.A.attr)在一代中。对象检测任务的实验结果突出显示了detDiffusion的统治性能,建立了布局引导的新最新作品。此外,降低的图像合成可以有效地增强训练数据,从而显着增强下游检测性能。
飞翼飞机的商业应用(如本文讨论的 Flying-V)有助于减少航空业产生的碳和氮排放。然而,由于没有尾翼,所有飞翼飞机的可控性都降低了。因此,机翼上控制面的位置和尺寸是一个不小的问题。本文重点介绍如何使用基于认证要求的离线操控质量模拟来解决此问题。在不同的飞行条件下,飞机必须能够执行认证机构定义的一组特定的机动。首先,离线模拟计算执行每个机动所需的升降舵、副翼和方向舵的最小控制权限。然后,根据所有机动的全局最小值,确定控制面的尺寸并沿机翼放置。所采用的气动模型结合使用了雷诺平均纳维-斯托克斯 (RANS) 和涡格法 (VLM) 模拟。使用VLM和用RANS模拟校准的VLM对控制面的控制权限进行评估,发现两者之间存在显著差异。
摘要:保护物质中的量子相干性不受环境影响对于在量子技术中使用分子和材料以及开发增强光谱至关重要。本文展示了如何在光学腔的背景下用量子光修饰分子发色团,以产生具有可调相干时间尺度的量子叠加态,这些相干时间尺度比裸分子的相干时间尺度更长,即使在室温和浸入溶剂中的分子中也是如此。为此,我们开发了分子极化态的退相干率理论,并证明涉及这种混合光物质态的量子叠加可以比裸分子存活时间长几个数量级,同时保持光学可控性。此外,通过研究有损腔存在下的这些可调相干增强,我们证明它们可以使用当今的光学腔来实现。该分析提供了一种可行的策略来设计和增加分子中的量子相干寿命。
双人直升机副驾驶的拦截器。此外,还可以编程一种新型的拦截器脱钩,以便在拦截器受阻或飞行员之间发生力争时优先考虑一名飞行员控制站。通过实时测量力,如果两名飞行员在相反方向上施加的力超过指定的力阈值,则拦截器会自动脱钩。本文旨在研究在可控性方面仍然可以接受的自动拦截器脱钩的最大力阈值。为此,四名试飞员参加了双人直升机座舱内配备主动拦截器的地面模拟器的实验测试。通过低空飞行中的接管控制任务开发和验证了安全严重性范围。发现自动拦截器脱钩的最大力阈值在俯仰轴上为 30 N,即控制振动的最大力阈值至少与 2 级操纵品质相关。此外,实施了主动力衰减逻辑,并证明可有效减少自动拦截器脱钩期间的控制活动和直升机姿态变化。
摘要:俄罗斯Gird-09火箭在1933年首次证明的混合火箭推进,结合了液体氧化剂和固体燃料以产生推力。尽管有许多优势,例如增强的安全性,可控性和潜在的环境益处,但混合动力尚未在太空应用中发挥全部潜力。近年来,关于混合推进的研究在学术界和工业中都取得了巨大的动力。最近的成就,例如学生火箭的海拔记录(64公里),第一台电动泵送的混合动力火箭的发射以及成功的25 S悬停测试突出了混合火箭的潜力。但是,尽管混合社区正在不断增长,但尚不存在工业利用和空间验证。在这项工作中,我们通过从文献中提出潜在的应用领域来重新评估混合火箭发动机的可能性。最重要的是,我们确定了阻碍太空部门混合推进的突破的技术挑战,并评估弥合混合火箭开发中差距所必需的技术和方法。
自Fattorini和Russel的开创性工作以来,抛物面部分分化方程的无效可控性已被广泛研究[17]。从Fursikov和Imanuvilov [19]以及Lebeau和Robbiano [23]的作品中,人们通常会承认,在抛物线副部分差异方程的背景下,在控制域上没有限制,并且对控制域没有限制,在内部或边界控制上没有几何限制。最近,对特定示例的研究强调了无效可控性或控制域上的几何条件的积极最小时间的存在。实际上,在[13]中的70 s中已经提供了这样的示例,但是由于特定的点控制,当时还没有理解此结果的全部范围。关于这种最小时间的最新结果已在也被视为特定的上下文中证明,即对耦合抛物线方程的控制[2,4,5,14]或对退化抛物线方程的控制[7,8,9,6]。尽管这三个设置表现出相同的定性行为,但到目前为止,它们之间尚未建立任何精确的联系。我们在本文中的目的是给出一个抽象的框架,其中包含那些不同的框架来研究最小的零控制时间属性。更确切地说,我们将将这一最小时间与(1.5)定义的时间t ∗相关联。我们将强调,这种最小的时间可以具有不同的起源。可以通过(广义)本征函数的某些定位相对于观察算子B ∗(如[13,5,5,14,7,8,9,6])。在定理1.2中处理此方面。,但也可以通过[2,4]中的基础操作员的特征值的凝结来创建最小的时间。在定理1.3中处理了这一方面。在这两个抽象设置中,最小的无效控制时间将由t ∗给出。我们还将提出一个更通用的设置(包括之前的两个设置),以应对最小时间来自特征函数的定位和光谱的凝结的情况。在这种情况下(请参见定理1.4),我们将证明存在这种最小时间与t ∗有关,但是此最小时间的确切值将是一个开放的问题。最后,仍然有一些例子不适合我们研究的不同设置。有关其中一些示例(请参阅第二节4)我们仍将能够证明最小的空控制时间由t ∗给出。对特定示例的这种分析将需要先验最小时间的值,因此目前,在[7,8,6]中研究的退化抛物线方程将不在本文的范围内。