与物理和化学合成相比,使用绿色还原提取物进行 ZnONPs 生物合成是一种简便、环保的方法。本研究首次利用薰衣草叶提取物合成 ZnONPs。采用紫外-可见光谱、PXRD、FESEM、EDAX 和 FTIR 等技术对 ZnONPs 进行表征。将 ZnONPs 以 80mg/L 至 160mg/L 的剂量依赖性方式暴露于登革热病原体白纹伊蚊 24 小时。在 346 nm 处发现紫外-可见吸收峰,证实了 ZnONPs 的生物合成。FESEM 结果表明,ZnONPs 以截角八面体形态的聚集体形式形成。平均粒径为 74.58 nm。 PXRD 分析表明 ZnONPs 本质上是结晶的。FTIR 分析表明,酚类、醇类和胺类等不同的功能基团参与了 ZnONPs 的合成。ZnONPs 在用 A. albopictus 的四龄幼虫处理后表现出显著的杀蚊幼虫活性。暴露 24 小时后,ZnONPs 在浓度为 160mg/L 时表现出 100% 的死亡率,LC50 值为 118mg/L,LC90 值为 135mg/L。基于这些结果,我们强烈建议将截角八面体形状的 L. angustifolia ZnONPs 用作对抗蚊媒疾病和害虫管理的强效生物医学药剂。
量子信息科学正在迅速发展,迫切需要紧凑型单波长(单频)激光光源。受激光与原子尺度上的独特材料的相互作用推动了量子计算和量子应用的进步,需要特定波长来针对单个原子相互作用。自然物理学决定了与特定原子、晶体和环境相互作用所需的独特波长。许多这些所需波长都在近紫外 (UVA) 和可见光谱中。由于其独特的激光特性,氮化镓 (GaN) 激光器非常适合解决这些自然界规定的 UVA 和可见波长。新兴量子市场为可见激光二极管制造商(如 BluGlass)提供了巨大的机会,因为许多实现原子跃迁的波长都发生在可见波长,并且在包括先进机器人和生物医疗设备在内的极具前景的应用中越来越受到客户的追捧。脑驱动的假肢自动化和用于军事和商业应用的量子导航原子钟就是这种下一代技术的很好例子。麦肯锡公司在其 2021 年量子报告中指出:“量子计算是我们这个时代最具革命性的技术之一,距离广泛的商业应用还有十年的时间。然而,鲜为人知但具有关键工业和科学意义的两项相关技术将更早面世:量子传感 (QS) 和量子通信 (QComm)。
这项研究利用密度功能理论(DFT)来探索BN掺杂的准四膜堆积(QTP)C 60 C6 60聚合物纳米片的结构稳定性,电子特性,吸附行为,光学特征和氢进化反应(HER)活性。吸附研究表明,与BN掺杂相比,与CO 2和N 2相比,H 2 O分子的亲和力明显更高,强调了湿度在调节气体感应响应中的关键作用。这与对新型非金属2D接口对水相互作用的有限原子规模的了解有限。Bader电荷传输分析和吸附能量计算进一步验证了H 2 O(+0.056 E)的增强吸附,从而诱导了0.5至1.2 eV的显着带隙修改。光学研究表明,可见光谱中的光吸收得到了改善,这表明了材料的光电和光催化应用的潜力。她的活性评估表明,BN掺杂降低了氢进化的过电势,从而提高了催化效率。总体而言,BN掺杂的QTP C 60纳米片具有较高的气体选择性,提高光学特性和改善的催化性能,使它们成为温室气体捕获,湿度感应和可持续能源应用的有希望的候选者。
与同时量身定制的空间和时间特性的超短脉冲合成在多模光子学中打开了新的视野,尤其是当空间自由度由可靠的拓扑结构控制时。当前的方法是在其拓扑电荷和光谱成分之间具有相关性的时空光束的当前方法产生了引人入胜的现象。然而,整形通常仅限于狭窄的拓扑和/或光谱带,极大地限制了可实现的时空动力学的广度。在这里,我们引入了一个用于超宽带脉冲的傅立叶时空塑形器,覆盖了近50%的可见光谱,并带有多种拓扑费用,值高达80。我们的方法不用依靠线性几何形状来依靠传统的光栅,而是采用带有圆形几何形状的衍射阳极,允许将方位相调制赋予带有轨道角动量的光束。我们通过基于高光谱离轴全息图引入一种表征技术来检索时空场。线性拓扑光谱相关性的剪裁能够控制波数据包的几种特性,包括其手性,轨道半径和相互缠绕的螺旋数,而复杂的相关性使我们能够操纵它们的动态。我们的带有宽带拓扑内容的时空束将使超高光激发,显微镜和多重功能中的许多新应用。
一种水热方法用于合成不同的光射道,以在染料敏化的太阳能电池(DSSC)中应用。这些光射手包括WO 3,Tio 2,石墨烯-Tio 2,Wo 3 -tio 2和石墨烯3 -tio 2的纳米结构。使用扫描电子显微镜(SEM),能量分散性X射线光谱(EDS),紫外线可见光谱(UV-VIS)和傅立叶转换红外光谱光谱(FTIR)分析纳米颗粒的形态。结果表明,石墨烯 - -tio 2纳米结构具有较大的表面积,为有效的太阳能转化提供了更多的活性位点。值得注意的是,DSSC合并了石墨烯3 -tio 2纳米颗粒电极的表现仅基于TiO 2和WO 3,其较高的短路电流密度为7.5 mA.cm -2,开放式电路电压为0.68 V,填充因子为0.46,填充因子为0.46,功率为2.4%。相反,纯TiO 2和WO 3细胞仅达到0.88%和0.69%的效率。三元纳米结构的出色电子迁移率促进了电荷捕获并注入导电基板,从而减少了重组。此外,WO 3纳米棒和石墨烯的散射效应增强了光阳极中的光收集,从而导致太阳能电池的总体效率提高。这些发现突出了合成石墨烯的潜力,可以在DSSC中应用于有希望的光阳极材料。
通过干燥胆汁固醇液晶(CLC)对纤维素纳米晶体(CNC)干燥胆汁脱脂液晶(CNC)产生的曲面表现出的波长和极化选择性的bragg反射,这使这些生物库的纳米颗粒极有效,许多光学应用都极有效。虽然传统产生的纤维是在浮出水面,但如果给出了球形曲率,则CLC衍生的螺旋CNC排列将获得新的强大功能。干燥的CNC悬浮液液滴不起作用,因为在各向异性胶体液滴中动力学停滞的发作会导致严重的屈曲和球形形状的丧失。在这里,通过在不可压缩油滴的球形微壳中确定CNC悬浮液可以避免这些问题。这可以防止屈曲,确保强螺旋螺距压缩,并产生具有独特可见颜色的单域胆固醇球形旋转式旋转颗粒。有趣的是,受约束的收缩会导致自发穿刺,使每个粒子都有一个单个孔,可以通过该孔提取内部油相进行回收。通过在不同的分数下混合两种不同的CNC类型,在整个可见光谱中调整了反射颜色。新方法添加了一种多功能工具,以寻求使用生物培养的CLC,从而使球形弯曲的颗粒具有相同的出色光学质量和光滑的表面,与以前仅获得的曲线相同。
摘要:多功能玻璃因其出色的机械、光学、热学和化学性能组合而在许多成熟和新兴行业中很常见,例如微电子、光伏、光学元件和生物医学设备。通过纳米/微图案化进行表面功能化可以进一步增强玻璃的表面特性,将其适用性扩展到新的领域。尽管激光结构化方法已成功应用于许多吸收材料,但透明材料在可见激光辐射下的可加工性尚未得到深入研究,尤其是对于生产小于 10 µ m 的结构。在这里,基于干涉的光学装置用于通过可见光谱中 ps 脉冲激光辐射的非线性吸收直接对钠石灰基板进行图案化。制作的线状和点状图案具有 2.3 至 9.0 µ m 之间的空间周期和高达 0.29 的纵横比。此外,在这些微结构中可以看到特征尺寸约为 300 nm 的激光诱导周期性表面结构 (LIPSS)。纹理化表面显示出显著改变的特性。也就是说,经过处理的表面具有增强的亲水行为,在某些情况下甚至达到超亲水状态。此外,微图案充当浮雕衍射光栅,将入射光分成衍射模式。优化了工艺参数,以产生具有超亲水特性和衍射效率超过 30% 的高质量纹理。
银纳米颗粒(AGNP)的绿色合成,由于它们使用了各种生物学应用,因此具有优势。这项研究的目的是使用桦木(Betula spp。)分支提取物,具有环保,成本效益,简单和廉价的绿色方法。即使是Betula也是宽阔的树,具有丰富的酚类化合物,有关Betula分支的使用的数据受到限制。在此范围内,这项研究是首次使用Betula Branche提取物,这些提取物作为还原和封盖剂来合成银纳米颗粒以评估抗菌活性和抗增殖效率。生物合成的AGNP的特征是各种表征方法,例如UV-可见光谱,动态光散射(DLS),傅立叶变换红外(FTIR)光谱和扫描电子显微镜(SEM)。表征分析揭示了槟榔提取物的酚类化合物是形成AGNP的还原和封盖剂。根据DLS和SEM分析,综合选定的AGNP分别显示为103.2±5.2和69.2±12.7 nm的球形形状。另外,分别通过对选定的微生物和细胞系的抗菌和抗增殖测试评估了生物合成的AGNP的生物学活性。在HT29结直肠癌细胞上,B3-4 AGNP的IC 50值确定为64.27 µg/ml。以及AGNP的抗菌活性结果揭示了对所有研究的测试微生物的剂量依赖性抑制作用。总而言之,这项研究显然表明使用了从betula分支提取物提取物生物合成的银纳米颗粒作为抗菌和抗癌研究的潜在药物。
摘要 随着纳米粒子在研究领域的应用越来越受到关注,本研究旨在评估两种植物来源凤凰木和白菜的化学和绿色合成氧化锌纳米粒子 (ZnO NPs) 的体外抗菌特性。叶提取物中的生物活性化合物可用于稳定纳米粒子。使用紫外-可见分光光度法 (UV-vis)、X 射线衍射 (XRD) 和扫描电子显微镜 (SEM) 来阐明合成的 ZnO NPs 的光学和结构特性。通过琼脂盘扩散试验评估了 ZnO NPs 对两种致病菌株的体外抗菌潜力:蜡状芽孢杆菌(一种革兰氏阳性动物病原体)和丁香假单胞菌(一种革兰氏阴性植物病原体),这是一种全面的方法。在 250 至 400 nm 范围内测量紫外-可见光谱,并通过 XRD 分析晶体结构。能量色散 X 射线光谱 (SEM-EDS) 分析证实了合成的 ZnO NPs 的所有三个样品的纳米结构具有部分纳米薄片和聚集体。D. elata ZnO NPs 对两种细菌菌株的抗菌活性相对高于 G. cusimbua ZnO NPs。因此,植物基纳米粒子可能是开发多功能且环保的生物医学产品的绝佳策略。由于它们具有预先存在的药用特性,它们具有额外的优势,这使得它们成为广泛使用的化学合成纳米粒子的更合适的替代品。关键词:凤凰木、白菜、氧化锌纳米粒子、抗菌活性、蜡状芽孢杆菌、丁香假单胞菌。
摘要本质上导电聚合物(ICP)彻底改变了材料科学,其在电子,传感器和能源存储中的多功能应用。本评论探讨了多吡咯(PPY)及其与金属氧化物的混合纳米复合材料的合成,性质和应用,强调了电导率,稳定性和性能的进步。ppy是一种突出的导电聚合物,通过化学聚合或电化学方法合成,并具有高电导率和机械柔韧性。与金属氧化物(如镍氧化物(NIO)和钨氧化物(WO 3))(WO 3)等金属氧化物的兴奋剂PPY增强了其在各种应用中的特性。PPY-NIO复合材料显示出提高的电导率和介电特性,而PPY-WO3复合材料在超电容器中表现出优异的电化学性能。本评论重点介绍了合成和表征这些复合材料的最新进展,包括X射线衍射(XRD),紫外线可见光谱(UV-VIS)和拉曼光谱法。这些发现强调了PPY金属氧化物复合材料在诸如储能,腐蚀保护和传感器开发等技术中的潜力。关键字:导电聚合物,聚吡咯,金属氧化物,掺杂,电性能。1。介绍大约四十年前,本质上导电聚合物(ICP)被添加到现代材料列表中,并打开了许多应用。重要的ICP包括聚乙炔,聚苯胺,聚吡咯,聚鸡,聚噻吩等等。polysulfur氮化物([sn] X),由Walatka等人发现。[1]在1973年,是第一个无机导电聚合物。在1970年代后期,MacDiarmid,Shirakawa和Heeger通过化学聚合确定了有机聚乙烯的半导体特性。Heeger博士的团队增强了基于聚噻吩的二极管,