在一级方程式赛中,团队竞争开发自己的汽车,并在每场比赛中达到最高的完成位置。但是,在比赛中,球队无法更改汽车,因此他们必须通过比赛策略改善汽车的完成位置,即优化他们选择哪种轮胎化合物可以涂在汽车上以及何时这样做。在这项工作中,我们引入了强化学习模型RSRL(种族策略增强学习),以控制模拟中的种族策略,为基于硬编码和蒙特卡洛的种族策略提供了更快的替代品。控制汽车的速度等于P5.5的预期完成位置(P1代表第一名,P20是最后的位置),RSRL在我们的测试竞赛中达到了P5.33的平均饰面位置,即2023 Bahrain Grand Prix,胜过P5.63的最佳基线。然后,我们在一项概括性研究中证明了如何通过训练优先考虑一个轨道或多个轨道的性能。此外,我们以特征重要性,基于决策的替代模型以及决策树的反事实来补充模型预测,以改善用户对模型的信任。最后,我们提供了插图,这些插图体现了我们在现实情况下的方法,在模拟和现实之间取得了相似之处。
摘要人工智能(AI)纳入地球科学的整合已在空间建模和气候引起的危害评估的变革时代迎来了。这项研究探讨了可解释的AI(XAI)的应用,以解决传统的“ Black-Box” AI模型的固有局限性,从而强调了高风险领域(例如自然危害管理)中的透明度和可解释性。通过分析水文学危害(包括干旱,洪水和滑坡),这项工作突出了XAI提高预测准确性并促进可行见解的潜力越来越大。该研究综合了XAI方法论的进步,例如注意力模型,Shapley添加说明(SHAP)和广义添加剂模型(GAM)及其在空间危害预测和缓解策略中的应用。此外,该研究确定了数据质量,模型可传递性和实时解释性的挑战,这为将来的研究提出了途径,以增强XAI在决策框架中的效用。这一综合概述有助于在XAI采用XAI方面的弥合差距,在快速的环境变化时代,可以实现强大,透明和道德的方法来进行气候危害评估。
当今的算法已经在各个领域达到甚至超越了人类的任务表现。特别是,人工智能(AI)在组织与个人(例如其客户)之间的互动中发挥着核心作用,例如改变了电子商务或客户关系管理。然而,大多数人工智能系统仍然是难以理解的“黑匣子”——不仅对于开发人员,而且对于消费者和决策者也是如此(Meske 等人,2022 年)。对于电子市场而言,诸如试图管理风险和确保基于机器学习的电子交易系统符合监管要求等问题不仅源于其数据驱动的性质和技术复杂性,还源于其黑匣子性质,其中“学习”创造了
摘要 社交媒体中的仇恨言论是一个日益严重的问题,会对个人和整个社会产生负面影响。社交媒体平台上的版主需要技术支持来检测有问题的内容并做出相应的反应。在本文中,我们开发并讨论了最适合为使用人工智能 (AI) 协助人类版主的决策支持系统创建高效用户界面的设计原则。我们对三个设计周期内的各种设计方案进行了定性和定量评估,共有 641 名参与者。除了测量感知易用性、感知有用性和使用意图外,我们还进行了一项实验,以证明 AI 可解释性对最终用户感知的认知努力、感知的信息量、心理模型和 AI 可信度的重大影响。最后,我们与软件开发人员一起测试了获得的设计知识,他们对所提出的设计原则的可重用性评价为高。
摘要:金融当局要求银行的信用评分模型具有可解释性。本文提出了一种可解释的人工智能 (XAI) 模型,用于预测挪威银行提供的无担保消费贷款独特数据集上的信用违约。我们将 LightGBM 模型与 SHAP 相结合,从而能够解释影响预测的解释变量。LightGBM 模型明显优于银行的实际信用评分模型(逻辑回归)。我们发现,LightGBM 模型中预测违约的最重要解释变量是已用信用余额的波动性、剩余信用占总信用的百分比以及客户关系的持续时间。我们的主要贡献是在银行业实施 XAI 方法,探索如何应用这些方法来提高最先进的 AI 模型的可解释性和可靠性。我们还提出了一种分析改进的信用评分模型的潜在经济价值的方法。
摘要 — 心智理论 (ToM) 是一种不断发展的能力,对人类的学习和认知有重大影响。早期发展的心智理论能力使人能够理解他人的目标和抱负,以及与自己不同的思维方式。自闭症谱系障碍 (ASD) 是一种普遍存在的广泛性神经发育障碍,参与者的大脑似乎以整个大规模大脑系统的弥漫性变化为标志,这些大脑系统由功能上连接但物理上分离的大脑区域组成,这些大脑区域在意志行为、自我监控和监控他人意图方面出现异常,通常称为心智理论。虽然功能性神经成像技术已被广泛用于确定与心智理论有关的神经相关性,但具体机制仍需阐明。当前大数据和人工智能 (AI) 框架的可用性为系统地识别自闭症患者和正常发育患者铺平了道路,通过识别神经相关性和基于连接组的特征来生成准确的社会认知障碍分类和预测。在这项工作中,我们开发了一个 Ex-AI 模型,该模型量化了正常发育和 ASD 个体之间 ToM 大脑区域变异的共同来源。我们的结果确定了一个特征集,可以在该特征集上训练分类模型以学习特征差异并更清晰地对 ASD 和 TD ToM 发展进行分类。这种方法还可以估计 ASD ToM 亚型内的异质性及其与基于社会认知障碍的症状严重程度评分的关联。基于我们提出的框架,我们使用可解释 ML (Ex-Ml) 模型获得超过 90% 的平均准确率,使用可解释深度神经网络 (Ex-DNN) 模型获得平均 96% 的分类准确率。我们的研究结果基于静息状态下 ToM 区域功能连接模式的关键差异和异质性,以及对早期发育阶段轻度至重度非典型社会认知和沟通缺陷的预测,在 ASD 样本中确定了三个重要的亚组。
使用历史数据训练数学结构,以对世界的不确定状态做出预测。例如,基于大量标记图像,深度卷积神经网络可以学习对疾病的存在做出高度准确的个体层面预测。这包括预测 COVID-19 阳性患者(Shi 等人,2020 年)。虽然高度准确的预测本身对于基于事实的决策至关重要(即使是从字面意义上讲也是关于疾病检测),但最先进的机器学习模型的高预测性能通常是以牺牲其输出的透明度和可解释性为代价的(Voosen,2017 年;Du 等人,2019 年)。换句话说:大多数高性能机器学习模型的特点是无法传达人类可解释的信息,说明它们如何以及为何产生特定预测。因此,此类机器学习应用对于人类用户甚至专业设计师来说通常都是完全的黑匣子,他们往往不了解决策关键输出背后的原因。从方法论的角度来看,无法提供与具体预测相符的解释会导致三类高级问题。首先,被忽视的不透明性会立即导致缺乏问责制,因为它妨碍了对此类系统预测的审计。这一缺陷引发了人们对黑箱社会兴起的担忧,组织和机构中不透明的算法决策过程会带来意想不到的和未预料到的下游后果,从而使情况变得更糟(Pasquale 2015;Angwin 等人 2016;Obermeyer 等人 2019)。其次,利用人工智能提高经济效率和人类福祉的潜力不仅限于通过预测为特定决策提供信息。揭示隐藏在复杂大数据结构中的新领域知识
摘要:我们提出了一个可解释的人工智能模型,该模型可用于解释客户购买或放弃非寿险的原因。该方法包括将相似性聚类应用于从高精度 XGBoost 预测分类算法获得的 Shapley 值。我们提出的方法可以嵌入到基于技术的保险服务 (Insurtech) 中,从而可以实时了解对客户决策影响最大的因素,从而主动洞察他们的需求。我们通过对保险微保单购买数据进行的实证分析证明了我们模型的有效性。研究了两个方面:购买保险单的倾向和现有客户流失的风险。分析结果表明,可以根据一组相似的特征有效、快速地对客户进行分组,这可以很好地预测他们的购买或流失行为。
摘要:裂纹表征是工业部件和结构的 NDT&E(无损检测与评估)的核心任务之一。如今,执行此任务所需的数据通常使用超声相控阵收集。许多超声相控阵检查都是自动化的,但对其产生的数据的解释却不是。本文提供了一种设计可解释的 AI(增强智能)以应对这一挑战的方法。它描述了一个名为 AutoNDE 的 C 代码,它包括一个基于改进的全聚焦方法的信号处理模块,该方法可创建被评估样本的一系列二维图像;一个图像处理模块,用于过滤和增强这些图像;以及一个可解释的 AI 模块 - 决策树,它选择可能存在裂纹的图像,将那些看起来代表相同裂纹的图像分组,并为每个组生成一份可能的检查报告,供人工检查员审阅。AutoNDE 已在实验室收集的 16 个数据集上进行了训练,这些数据集通过对带有大型光滑平面缺口(包括嵌入式和表面破损)的钢样本进行成像而收集。它已在另外两个类似的数据集上进行了测试。本文介绍了此次训练和测试的结果,并详细描述了一种处理超声波数据中主要误差源(样本表面的起伏)的方法。
摘要 近年来,随着深度学习 (DL) 算法的广泛应用,例如用于检测 Android 恶意软件或易受攻击的源代码,人工智能 (AI) 和机器学习 (ML) 在网络安全解决方案的开发中变得越来越重要。然而,与其他 DL 应用领域(例如计算机视觉 (CV) 和自然语言处理 (NLP))具有相同的基本限制,基于 AI 的网络安全解决方案无法证明结果(从检测和预测到推理和决策)并使人类可以理解。因此,可解释人工智能 (XAI) 已成为解决使人工智能模型对人类用户可解释或可解释的相关挑战的重要主题。它在网络安全领域尤其重要,因为 XAI 可以让每天被数以万计的安全警报(其中大部分是误报)淹没的安全操作员更好地评估潜在威胁并减少警报疲劳。我们对 XAI 与网络安全之间的交集进行了广泛的文献综述。具体来说,我们从两个角度调查现有文献:XAI 在网络安全中的应用(例如,入侵检测、恶意软件分类)和 XAI 的安全性(例如,对 XAI 管道的攻击、潜在的对策)。我们用文献中讨论过的几种安全属性来描述 XAI 的安全性。我们还提出了文献中未解答或未充分解决的开放性问题,并讨论了未来的研究方向。