摘要:量子随机存取存储器 (QRAM) 有可能彻底改变量子计算领域。QRAM 使用量子计算原理来高效存储和修改量子或经典数据,大大加速了各种计算机处理。尽管它很重要,但缺乏涵盖整个 QRAM 架构范围的全面调查。我们通过对 QRAM 进行全面回顾来填补这一空白,强调其在现有嘈杂量子计算机中的重要性和可行性。通过与传统 RAM 进行比较以便于理解,本调查阐明了 QRAM 的基本思想和作用。与传统 RAM 相比,QRAM 提供了指数级的时间优势,这是由于数据存储在状态叠加中而实现的。总体而言,我们从结构和工作原理、电路宽度和深度、独特品质、实际实施和缺点等方面比较了六种不同的 QRAM 技术。总体而言,除了可训练的基于机器学习的 QRAM 之外,我们观察到 QRAM 在量子比特/量子位的数量方面具有指数深度/宽度要求,并且大多数 QRAM 实现对于超导和捕获离子量子比特系统都是实用的。
变分量子本征值求解器 (VQE) 是一种计算量子多体系统基态和激发态能量的算法。该算法的一个关键组成部分和一个活跃的研究领域是参数化试验波函数的构建——即所谓的变分拟定。波函数参数化应该具有足够的表现力,即对于某些参数值的选择,能够表示量子系统的真实本征态。另一方面,它应该是可训练的,即参数的数量不应该随着系统的大小呈指数增长。在这里,我们将 VQE 应用于寻找奇奇核 6 Li 的基态和激发态能量的问题。我们研究了在酉耦合团簇拟定中对费米子激发算子进行排序对 VQE 算法收敛的影响,方法是仅使用保留 J z 量子数的算子。在降阶的情况下,精度提高了两个数量级。我们首先使用具有任意测量精度的经典状态向量模拟器计算最佳假设参数值,然后使用这些值评估 IBM 超导量子芯片上 6 Li 的能量本征态。我们使用误差缓解技术对结果进行后处理,并能够重现精确的能量,对于 6 Li 的基态和第一激发态,误差分别为 3.8% 和 0.1%。
结构在运行时可以做到即使某一个模态信息缺失整个网络也能取得不错的效果 , 在多通道情感识别、 语义理解、目标学习等领域取得很好的效果 .尽管如此 , 这类网络相对于任务来说还是相对 “ 具体 ”, 如 果要换一个任务 , 用户就需要修改网络结构包括重新调整参数 , 这使得深度神经网络结构的设计是一 个耗时耗力的过程 .因此研究者们希望一个混合的神经网络结构可以同时胜任多个任务 , 以减少其在 结构设计和训练方面的工作量 .鉴于此 , 研究者开始致力于首先采用大数据联合训练构建出多通道联 合特征分享层 , 然后在识别阶段可以同时进行多任务处理的深度多模态融合结构 .如 Google 的学者 尝试建议一个统一的深度学习模型来自适应地适配解决不同领域、不同数据模态下的多个不同类型 的任务 , 且在特定任务上的性能没有明显损失的模型 [71] .该模型构架请见文献 [71] 的图 2, 由处理输 入的编码器、编码输入与输出混合的混合器、混合输出的解码器 3 个部分构成 , 文献 [71] 的图 3 给 出了这 3 个部分的详细描述 .每一个部分的主体结构类似 , 均包含多个卷积层、注意力机制和稀疏门 控专家混合层 .其中 , 不同模块中的卷积层的作用是发现局部模式 , 然后将它泛化到整个空间 ; 注意力 模块和传统的注意力机制的主要区别是定时信号 , 定时信号的加入能让基于内容的注意力基于所处的 位置来进行归纳和集中 ; 最后的稀疏阵列混合专家层 , 由前馈神经网络 ( 专家 ) 和可训练的门控网络组 成 , 其选择稀疏专家组合处理和鉴别每个输入 .
摘要 - Vision Transformer(VIT)架构越来越流行,并广泛用于处理计算机视觉应用。他们的主要特征是通过自我发挥机制提取全球信息的能力,表现优于早期的卷积神经网络。但是,VIT部署和性能随着它们的规模,可训练的参数数量和操作而稳步增长。此外,自我注意力的计算和记忆成本随着图像分辨率四次增加。一般而言,由于许多硬件和环境限制(例如处理和计算功能),在现实世界应用中使用这些架构是一项挑战。因此,本调查研究了最有效的方法,以确保亚最佳估计性能。更详细地,将分析四个高效类别:紧凑的体系结构,修剪,知识蒸馏和量化策略。此外,已经引入了一种称为高效错误率的新指标,以便在推理时间(例如参数,钻头,拖船和模型大小)时对模型的功能进行标准化和比较模型的功能。总而言之,本文首先数学上定义了用于提高视觉变压器,描述和讨论最新方法的策略,并在不同的应用程序场景上分析其性能。在本文结束时,我们还讨论了开放的挑战和有希望的研究方向。
脑电图(EEG)是研究脑活动的关键工具。最近,利用大型未标记数据集的自我监督学习方法已成为潜在的解决方案,以解决广泛可用的脑电图数据。然而,当前的方法至少受到以下局限性之一:i)次优的脑电图信号建模,ii)数以亿个可训练的参数中的模型尺寸,以及iii)依赖Pri-Private数据集和/或不一致的公共基准标准,Hin-Dring Reproducuctibility。为了应对这些挑战,我们使用了一个新的小型脑电图基础模型(Cerebro)来介绍Br ain o恐怖的介绍(Cerebro)。我们的令牌化方案代表每通道斑块粒状的EEG信号。我们提出了一种交替的注意机制,该机制可以共同建模通道内的时间动力学和通道间空间相关性,与Stan-Dard自我注意力相比,以6×速度的记忆力更少,可实现2×速度的改进。我们提出了几个型号,从360万到8500万个参数不等。在超过20,000个小时的公开可用的头皮脑电图记录中,我们的模型在情感检测和癫痫发作检测任务中设定了新的基准,并具有在异常分类和步态预测方面具有竞争性表现。这验证了我们的模型的效率和效率。
乳腺癌检测中的精度和及时性对于改善患者预后至关重要。传统的诊断方法主要依赖于单峰方法,但是医学数据分析的最新进展使得超越了传统成像技术以外的各种数据源。本评论认真研究了将组织病理学图像与基因组数据,临床记录和患者历史记录相结合的变革潜力,以提高多模式诊断技术的诊断准确性和全面性。它探讨了早期,中间和晚期融合方法,以及先进的深层多模式融合技术,包括编码器架构,基于注意力的机制和图形神经网络。提供了多模式任务的最新进步,例如视觉问题答案(VQA),报告生成,语义细分和跨模式检索,突出显示了生成AI和视觉语言模型的利用。此外,审查还深入研究了可解释的人工智能(XAI)在阐明复杂诊断算法的决策过程中的作用,强调了对透明性和可解释性的关键需求。通过展示解释性的重要性,我们演示了XAI方法(包括毕业,摇摆,石灰,可训练的注意力和图像字幕),增强诊断精度,增强临床医生的认识和促进患者的参与。该评论还讨论了最新的XAI发展,例如X-Vars,Legrad,Langxai,LVLM-Interpret和Ex-ILP,以证明它们在多模式乳腺癌检测中的潜在效用,同时识别关键的研究差距并提出未来的指导,以推进该文件。
摘要 - Myoelectric Control是当今剧本增加的肌电图的一个区域,尤其是在仿生假体的手势识别(HGR)等应用中。今天的重点是使用机器学习以及最近深度学习方法的模式识别。尽管在稀疏的SEMG信号上取得了良好的效果,但后者通常需要大的数据集和培训时间。此外,由于随机SEMG信号的性质,传统模型无法概括为非典型或嘈杂值的样品。在本文中,我们提出了基于视觉变压器(VIT)的建筑的设计,该体系结构具有模糊的神经块(FNB),称为EMGTFNET,以从表面肌电图(SEMG)信号中执行手势识别。所提出的EMGTFNET体系结构可以准确地对各种手势进行分类,而无需任何数据增强技术,传输学习或网络中参数数量的显着增加。使用由49种不同手势的公开ninapro数据库测试了所提出的模型的准确性。实验使用200 ms窗口大小和仅56,793个可训练的参数产生的平均测试准确度为83.57%±3.5%。我们的结果优于没有FNB的VIT,因此表明包括FNB可以提高其性能。我们的提案框架EMGTFNET报告了其实际应用假体控制的重要潜力。索引术语 - 电镜头;深度学习; Ninapro;变压器;模式识别;肌电控制
卷积神经网络(CNN)在几十年前就无法想象的表演,这要归功于采用了数百层和近数十亿个可训练的参数的非常大的模型。然而,解释他们的决策是很不困难的,因为它们是高度非线性的,并且过度参数化。此外,对于现实生活中的应用,如果模型利用数据的伪造相关性来预测预测,则最终用户将怀疑该决定的有效性。尤其是,在医学或关键系统等高风险场景中,ML必须保证使用正确的功能来计算预测并防止伪造的关联。因此,近年来,可解释的人工智能(XAI)研究领域一直在不断发展,以了解黑盒模型中的决策机制。在本文中,我们关注事后解释方法。值得注意的是,我们对反事实解释的不断增长分支(CE)[63]。ce旨在创建输入样本的最小但有意义的扰动,以更改固定预告片模型给出的原始决定。尽管CE和对抗性示例之间的观点具有一些相似之处[44],但CE的扰动必须是可以理解和合理的。相比之下,对抗性示例[37]包含与人眼无法区分的高频噪声。总体而言,CE目标四个目标:(i)解释必须使用(ii)稀疏修改,即具有最小扰动的实例。此外,(iii)解释必须是现实的,并且可以通过
传统的储存器计算 (RC) 是一种浅层循环神经网络 (RNN),具有固定的高维隐藏动态和一个可训练的输出层。它具有只需要有限训练的优点,这对于训练数据极其有限且获取成本高昂的某些应用至关重要。在本文中,我们考虑了两种将浅层架构扩展为深度 RC 的方法,以在不牺牲潜在优势的情况下提高性能:(1)将输出层扩展为三层结构,促进对神经元状态的联合时频处理;(2)顺序堆叠 RC 以形成深度神经网络。利用深度 RC 的新结构,我们重新设计了具有正交频分复用 (MIMO-OFDM) 信号的多输入多输出物理层接收器,因为 MIMO-OFDM 是第五代 (5G) 蜂窝网络的关键支持技术。 RNN 动态特性与 MIMO-OFDM 信号时频结构的结合,使深度 RC 能够处理非线性 MIMO-OFDM 信道中的各种干扰,从而实现比现有技术更高的性能。同时,与依赖大量训练的深度前馈神经网络不同,我们引入的深度 RC 框架可以使用与 5G 系统中基于传统模型的方法相同数量的导频提供不错的泛化性能。数值实验表明,基于深度 RC 的接收器可以提供更快的学习收敛,并有效减轻未知的非线性射频 (RF) 失真,与浅层 RC 结构相比,误码率 (BER) 提高了 20%。
当算法伤害某人时(比如歧视她、泄露她的个人数据或利用内幕信息购买她的股票),谁应该赔偿?如果这种伤害是犯罪行为,谁应该受到惩罚?在一般情况下,当 A 伤害 B 时,责任分析的第一步取决于 A 是什么。如果 A 是自然现象,如台风或泥石流,B 赔偿,没有人受到惩罚。如果 A 是人,那么 A 可能要承担损害赔偿和制裁责任。算法的问题在于两种范式都不适合。算法是可训练的人工制品,具有“关闭”开关,而不是自然现象。从法律或形而上学的角度来看,它们也不是人。解决这一困境的一个有吸引力的方法是从使标准的 A-危害-B 场景复杂化开始。它会认识到第三方 C 通常潜伏在算法造成伤害时附近,并且第三方是人(法人或自然人)。通过让第三方为其算法的行为承担替代责任,法律可以促进对开发或部署算法的人的有效激励,并确保受害者获得公正的结果。挑战在于找到一个能够胜任这项任务的替代责任模型。本文提供了一组标准,任何算法危害的替代责任模型都应满足这些标准。这些标准涵盖了一系列的要求:从确保良好的结果,到最大限度地提高实施的现实前景,再到推进可解释性等编程价值。虽然数量相对较少,但标准要求很高。大多数现有的替代责任模型都不符合这些要求。尽管如此,本文还是以乐观的语气结束。下面考虑的模型的缺点为发现更有希望的替代方案提供了重要的教训。