图 2. 所提出的光控编码元件的设计和特性。a) 元原子编码元件的详细结构,在 SiO 2 基板上构建了 1 μm 厚的金方块和 1 μm 厚的 GeTe 方块图案。b) 编码元件两种状态的示意图:状态“0”表示 GeTe 的非晶态(绝缘态),状态“1”表示 GeTe 的晶体(导电)态。c) 和 d) 两种状态下编码元件的相应反射特性(c 幅度和 d 相位)。e) GeTe 层表面电阻随温度的变化(双探针测量),显示两种状态下的电特性相差六个数量级以上,并且冷却至室温时晶体状态具有非挥发性行为。 f) 有限元模拟 GeTe 层在具有不同能量密度的 35 纳秒长单脉冲紫外激光照射下的温度上升情况:单脉冲的通量为 90 mJ/cm 2,将使最初为非晶态的 GeTe 的温度升至其结晶温度 ( TC ) 以上,而随后的 190 mJ/cm 2 激光脉冲将使 GeTe 的温度升至其局部熔化温度 TM 以上,并将材料熔化淬火回非晶态。下图是拟议的 1 比特元原子的配置和示意图
推荐引用 推荐引用 Pavlov, Y., Mushtaq, F., Adamian, N., Appelhoff, S., Arvaneh, M., Benwell, C., Beste, C., Bland, A., Bradford, D., Bublatzky, F., Busch, N., Clayson, P., Cruse, D., Czeszumski, A., Dreber, A., Dumas, G., Ehinger, B., Ganis, G., He, X., Hinojosa, J., Huber-Huber, C., Inzlicht, M., Jack, B., Johannesson, M., Jones, R., Kalenkovich, E., Kaltwasser, L., Karimi-Rouzbahani, H., Keil, A., & König, P. (2021) '#EEGManyLabs: Investigating the replicaability of influence EEG 实验”,Cortex,。可从以下网址获取:10.1016/j.cortex.2021.03.013 本文由 PEARL 健康学院免费开放获取。它已被 PEARL 授权管理员接受纳入心理学学院。如需更多信息,请联系 openresearch@plymouth.ac.uk。
背景长卷是一个主要的公共卫生负担,导致全球数千万患者的各种衰弱症状。尽管这种压倒性的疾病患病率和惊人的成本,但它对患者的生活和强烈的全球研究工作的严重影响,但由于其复杂性,对这种疾病的研究已被证明具有挑战性。全基因组关联研究(GWAS)仅确定了可能与该疾病相关的四个基因座,尽管这些结果在研究之间并未在统计学上复制。先前的组合分析研究确定了总共73个基因,这些基因与两个长期的共同群体高度相关,主要是(> 91%)欧洲欧洲血统萨诺·金(Sano Sano Gold),我们试图在我们所有人(我们(AOU))中重现这些发现。
(https://journals.plos.org/plosone/s/materials-and-software-sharing)。各国政府拥有融资能力,必须参与开放科学,例如美国国立卫生研究院(Collins and Tabak,2014 年)和法国政府(https://www.ouvrirlascience.fr/second-national-plan-for-open-science/)。最后,整合开放科学并创造
摘要 可重复使用运载火箭 (RLV) 不仅是经济和生态可持续的太空进入的关键,也是满足对小型卫星和巨型星座日益增长的需求的一项至关重要的创新。为了确保欧洲独立的太空进入能力,ASCenSIon(推进太空进入能力 - 可重复使用性和多卫星注入)作为一个创新培训网络诞生,拥有 15 名早期研究人员、10 名受益者和 14 个遍布欧洲的合作组织。本文概述了该任务,从可重复使用级的上升到再入,包括多轨道注入和安全处置。特别关注 ASCenSIon 内部开展的有关任务分析 (MA)、制导导航和控制 (GNC) 和气动热力学 (ATD) 的活动。介绍了项目的预见方法、途径和目标。这些主题由于相互关联,需要内部创新和高水平的协作。飞行前设计能力推动了 MA 和 GNC 任务化工具与 ATD 软件相结合以测试/探索再入解决方案的必要性。这种可靠而高效的工具将需要开发用于发射器再入的 GNC 算法。此外,还解决了 RLV 轨迹优化的具体挑战,例如集成的多学科飞行器设计和轨迹分析、快速可靠的机载方法。随后,本研究的结果用于制定控制策略。此外,执行新颖的多轨道多有效载荷注入。随后,开发了一种 GNC 架构,该架构能够在精度和软着陆约束下以最佳方式将飞行器引导至目标着陆点。此外,ATD 在多个阶段影响任务概况,需要在每个设计步骤中加以考虑。由于初步设计阶段的复杂性和计算资源有限,需要使用响应时间短的替代模型来基于压力拓扑预测沿所考虑轨迹的壁面热通量。完整的概况包括发射装置为确保遵守空间碎片减缓指南而采用的任务后处置策略,以及这些策略的初步可靠性方面。本文对 ASCenSIon 工作框架内讨论的主题及其相互联系进行了初步分析,为开发 RLV 的新型尖端技术铺平了道路。关键词:可重复使用运载火箭、制导、导航和控制、可靠性、气动热力学、
摘要:成熟的B细胞通过类开关重组(CSR)显着使免疫球蛋白(IG)生产多样化,从而允许遥远的“开关”区域的连接。CSR是由Activation诱导的脱氨酶(AID)启动的,该酶(AID)靶向在转录的靶向S区域的单链DNA中充分暴露的细胞糖苷,具有对WRCY基序的特定亲和力。在MAM-MALS中,富含G的序列还存在于S区域,形成有利于CSR的规范G-四链体(G4S)DNA结构。与G4-DNA(G4配体)相互作用的小分子被证明能够在B淋巴细胞中调节CSR,这要么积极地(例如核苷二磷酸激酶同工型)或负面的(例如RHPS4)。G4-DNA也与转录的控制有关,由于它们对CSR和转录调控的影响,富含G4的序列可能在B细胞恶性肿瘤的自然史上起作用。由于G4-DNA位于基因组中的多个位置,尤其是在癌基因启动子中,因此尚待澄清它如何更具体地促进生理学中的合法CSR,而不是致病性易位。G4结构在转录DNA和/或相应的转录本和重组中的特定调节作用似乎是理解免疫反应和淋巴结发生的主要问题。
使用现场可编程门阵列 (FPGA) 实现可重构硬件加速器以进行脉冲神经网络 (SNN) 模拟是一项有前途且有吸引力的研究,因为大规模并行性可以提高执行速度。对于大规模 SNN 模拟,需要大量 FPGA。然而,FPGA 间通信瓶颈会导致拥塞、数据丢失和延迟效率低下。在这项工作中,我们为多 FPGA 采用了基于树的分层互连架构。这种架构是可扩展的,因为可以将新分支添加到树中,从而保持恒定的本地带宽。基于树的方法与线性片上网络 (NoC) 形成对比,在片上网络 (NoC) 中,拥塞可能由众多连接引起。我们提出了一种路由架构,该架构通过采用随机仲裁引入仲裁器机制,考虑先进先出 (FIFO) 缓冲区的数据级队列。该机制有效地减少了由 FIFO 拥塞引起的瓶颈,从而改善了整体延迟。结果显示了为延迟性能分析而收集的测量数据。我们将使用我们提出的随机路由方案的设计性能与传统的循环架构进行了比较。结果表明,与循环仲裁器相比,随机仲裁器实现了更低的最坏情况延迟和更高的整体性能。
3 美国新罕布什尔州汉诺威达特茅斯学院心理与脑科学系;4 德国柏林马克斯普朗克人类发展研究所适应性理性中心;5 美国德克萨斯州奥斯汀德克萨斯大学奥斯汀分校心理学系;6 瑞士洛桑洛桑大学医院和洛桑大学放射科;7 美国加利福尼亚州斯坦福大学心理学系,8 美国密苏里州圣路易斯华盛顿大学圣路易斯心理与脑科学系;9 波兰托伦尼古拉哥白尼大学现代跨学科技术中心;10 丹麦哥本哈根 Rigshospitalet 神经生物学研究部;11 哥本哈根大学计算机科学系
•美国西北大学SEDA OGRENCI•美国AMD的Stephen Neuendorffer•NHAN TRAN,美国费米拉布,美国•弗雷德里克·克乔尔斯塔德(Fredrik Kjolstad),美国斯坦福大学,美国•英国剑桥,德比亚斯·格罗瑟(Tobias Grosser)开源软件的流行率,以及对开源硬件的兴趣越来越多,可重新配置的技术在很大程度上是由专有的,封闭的工具提供的,这些工具与专有硬件架构紧密相关。鉴于这些工具和体系结构的复杂性,缺乏开放源解决方案历史上为该地区的教育,研究和创新带来了重大障碍。但是,最近,新的开源工具和方法涵盖了高水平合成和物理设计流的整个范围。在新型加速器体系结构支持机器学习的最新爆炸中,似乎正在重复类似的模式。尽管CPU和GPU体系结构的汇编通过大量开源项目(例如GCC和Clang/LLVM)支持了对新型Accelerator Architectures的支持,但尚未上游。本期特刊的目的是强调与可重构设备有关的开源软件和硬件技术的最新研究和开发,例如FPGA和CGRA,以及其他新型的加速器架构。它将包含涵盖广泛主题的文章,包括用于设计,优化,调试和机器学习的开源工具,针对从单个设备到分布式系统以及开源硬件和系统设计的广泛设计范围。本期特刊将成为嵌入式系统,计算机架构,设计自动化,特定领域的加速度和其他相关领域领域的研究人员,工程师和从业人员的宝贵资源,而感兴趣的主题包括但不限于以下开源解决方案:
硬件安全实验室和破坏最新电路处理的需求导致了对新扰动方法的不断研究。Skorobogatov 和 Anderson [1] 揭示了使用可见光和红外光的可能性。故障分析界已经对这种物理现象进行了研究和解释 [2–5]。激光可以同步和聚焦,以诱发瞬态故障。在安全评估实践中,这些故障可能会产生强大的效果。电磁辐射扰动为电路破坏提供了新的突破口 [8, 6, 7]。这种方法可能不如光那么通用,但也能产生非常有趣的结果。对电路的访问限制较少,不一定需要拆开包装。为了继续研究扰动的波长谱,这里建议先了解一下 X 射线的可能性。过去曾分析过 X 射线与电子电路的相互作用 [9–12],但其在安全性评估中的应用主要局限于芯片和封装成像,并被提及为一种扰动手段,但没有实际效果。聚焦于被测设备的特定区域可以看作是扰动技术的关键点。最终的挑战可能是聚焦到激进技术节点上的单个晶体管。同步加速器设备能够利用 X 射线辐射实现这一目标。