我们研究量子修正黑洞附近的纠缠退化。我们考虑一个双粒子系统 (Alice-Rob),其中 Alice 自由 (径向) 落入量子修正黑洞的事件视界,而 Rob 位于黑洞事件视界附近。我们考虑一个最大纠缠态 (在 Fock 基中),并从 Rob 是匀加速观察者的基本假设开始。然后,我们对涉及闵可夫斯基真空态和林德勒数态的关系进行了教学分析。按照 Martín-Martínez 等人 [ Phys. Rev. D 82 , 064006 (2010) ] 中给出的类比,我们从闵可夫斯基-林德勒关系中建立了哈特尔-霍金真空态与 Boulware 和反 Bouware 数态之间的关系。然后,我们利用近视界近似以适当的形式写出量子修正黑洞度量。接下来,我们得到对数负性和互信息的解析形式,并绘制为 Rob 与 r = 0 点距离的函数。我们观察到,纠缠退化减慢,这是因为通过在史瓦西黑洞中加入量子引力修正,度量的失效函数发生了结构变化。至关重要的是要理解,任何改变度量结构的修正引力理论都会导致不同的纠缠退化速率。在视界半径处,无论底层理论如何,纠缠退化始终是完全的。这一观察结果可能导致在未来一代先进的观测场景中识别出修正引力理论的特征。这种修改可能来自更高的曲率修正、更高维度的引力理论、量子引力修正等。我们还可以将此效应解释为一个噪声量子通道,其算子和表示为完全正的和迹保持映射。然后,我们最终使用此算子和表示获得纠缠保真度。
到自由落体进入黑洞的质量的辐射[6-9])。同样,一个永恒的均匀加速边界(移动的镜子)显然不会向无穷远处的观察者发射能量,例如[10]。对于永恒均匀加速的微妙之处和非直观行为,目前尚未达成共识(有关选择真空态之间区别的可能理由,请参阅[11])。另一个非常有趣的方面[12]是渐近静态镜子保持幺正性和信息[13]。我们探索了一个融合均匀加速和零加速度这两种状态的模型,并直观地表明该系统可以在较长时间内以恒定功率辐射粒子。该系统不仅会保存信息,还会发射热能,守恒总辐射能量,并发射有限的总粒子,而不会发生红外发散。这个模型可以模拟黑洞完全蒸发。相关的探索并非史无前例。黑洞蒸发具有相近的加速类似物[14],包括移动镜像模型[4,15]。渐近无限加速轨迹[16],如史瓦西黑洞、雷斯纳-诺德斯特伦黑洞和克尔黑洞的加速边界对应关系[17-19],演化为永恒热平衡解[20]。渐近有限加速(渐近均匀加速)对应于极值黑洞[21-24],而渐近恒定速度(零加速度)可以提供描述黑洞残余模型(例如[25-31])的信息保留准热解。最近,人们特别关注以渐近零速度镜为特征的幺正完全黑洞蒸发模型(例如 [ 32 – 38 ])。纠缠熵 [ 39 ] 以及信息直接与镜轨迹相关 [ 40 ]。然而,远处的观察者探测到的是辐射功率,而不是熵。我们通过均匀加速的模拟情况研究了完全黑洞蒸发中这两者之间的联系。
热场复偶(TFD)是反德西特/共形场论(AdS/CFT)对应关系中的一种特殊状态[1],它将 D + 1 维反德西特空间中的假定量子引力理论与维度 D 边界上的共形场论联系起来。黑洞发射热辐射[2],实际上在外部留下一个热密度矩阵。以色列[3]指出,通过考虑热场复偶可以重现可观测量的计算,类似于史瓦西几何的最大延伸。后来,马尔达西那[4]在 AdS/CFT 的背景下推测,边界 CFT 的 TFD 应该对应于 AdS 中永恒的双面黑洞。存在于相差一维的理论之间的对偶性这种想法通常被称为全息论。为了检验这种二元性,考虑可穿越虫洞现象是很有趣的,这是 AdS/CFT 的一个惊人预测。从引力的角度来看,黑洞两侧的边界显然不能因果通信。虽然有一个空间虫洞连接两个外部区域,但人们无法穿越它而不落入黑洞奇点。如果爱丽丝和鲍勃在对立面,他们就无法相遇,除非他们一起跳进黑洞。Gao、Jafferis 和 Wall [ 22 ] 的最新进展表明,两种边界理论的特定耦合会产生负能量冲击,使 TFD 状态下的虫洞可穿越。换句话说,鲍勃可以与爱丽丝团聚而不会被吸入黑洞。作为此协议以及 AdS/CFT 中许多其他思想实验的起点,人们假设可以访问 TFD 状态。一个很有前途的用于探测 AdS/CFT 的量子力学系统是 Sachdev-Ye-Kitaev (SYK) 模型 [5,6]。例如,它在低能下表现出共形对称性,其动力学由 Schwarz 作用量支配 [7]。相同的作用量支配着一种被称为 Jackiw-Teitelboim 引力的二维量子引力理论 [8,9]。此外,它已被证明会在低温下使混沌界限饱和,这也是黑洞最大扰乱的标志 [10,11]。在参考文献 [12] 中,作者在近 AdS2 中构造了永恒可穿越虫洞解,并表明两个耦合 SYK 模型的低能极限具有相同的作用量。一个关键结果是,他们表明 SYK 模型的 TFD 可以很好地通过具有小相互作用的双边哈密顿量的基态来近似。在本研究中,我们考虑了在噪声中尺度量子 (NISQ) [ 13 ] 设备上准备 SYK 模型的 TFD 的状态的任务。参考文献 [ 14 ] 中考虑了准备任意理论的 TFD 的更一般任务。同样,该策略是构建一个哈密顿量,其基态编码了 TFD 结构。虽然方程中的哈密顿量文献 [ 12 ] 中的 (3.21) 可以看作文献 [ 14 ] 中构造的略微特殊版本,我们将在本文中使用它,因为它相对简单。这两种方法都考虑使用辅助浴将系统绝热冷却到基态。在这里,我们采用变分法,从参数可调的量子电路假设开始。这样就不需要辅助系统了。类似的方法曾用于构造 Ising 模型的 TFD [ 15 ]。简而言之