图1:用于使用各种植物物种(杨树,小麦,菠菜)的无叶绿体细胞系统的工作流,用于自动高通量零件表征。通过完整的叶绿体和随后的乳液的分离,是从populus×Canescens(Poplar),Spinacia oleracea(菠菜)和Triticum aestivum(小麦)中产生的无叶绿体细胞提取物。随后构建和测试了标准化植物杆级的14级组装库,包括各种调节元素。通过涉及非接触式液体处理程序(Echo 525,Cobra)的自动工作流程建立了无细胞的反应,以将无叶绿体细胞提取物与DNA模板和纳米型底物相结合。证明了叶绿体细胞提取物的翻译活性,我们首先旨在验证叶绿体CFE系统是否具有足够的
杜松种类是杯形科中的灌木或树木,在森林生态系统中起着重要作用。在这项研究中,我们报告了在哈萨克斯坦收集的五种假发物种的质体(PT)基因组的完整序列(j。 communis,j。 Sibirica,J。 pseudosabina,j。 semiglobosa和j。 Davurica)。 除了两个完整的Pt基因组序列外,还注释了五种物种的Pt基因组的序列。 Sabina和J。 Seravschanica,我们先前已报告。 将这七种物种的Pt基因组序列与Pub-lic ncbi数据库中可用的杜松物种的Pt基因组进行了比较。 杜松物种的PT基因组的总长度,包括先前发表的PT基因组数据,范围为127,469 bp(j。 semiglobosa)至128,097 bp(j。 communis)。 每个杜松子质体由119个基因组成,包括82个蛋白质编码基因,33个转移RNA和4个核糖体RNA基因。 在确定的基因中,16个包含一个或两个内含子,并复制了2个tRNA基因。 对PT基因组序列的比较评估表明,鉴定了1145个简单序列重复标记。 基于82种蛋白质编码基因的26种假发物种的系统发育树,将杜松样品分为两个主要进化枝,对应于Juniperus和Sabina切片。 PT基因组序列的分析表明ACCD和YCF2是两个最多态性基因。在这项研究中,我们报告了在哈萨克斯坦收集的五种假发物种的质体(PT)基因组的完整序列(j。communis,j。Sibirica,J。 pseudosabina,j。 semiglobosa和j。 Davurica)。 除了两个完整的Pt基因组序列外,还注释了五种物种的Pt基因组的序列。 Sabina和J。 Seravschanica,我们先前已报告。 将这七种物种的Pt基因组序列与Pub-lic ncbi数据库中可用的杜松物种的Pt基因组进行了比较。 杜松物种的PT基因组的总长度,包括先前发表的PT基因组数据,范围为127,469 bp(j。 semiglobosa)至128,097 bp(j。 communis)。 每个杜松子质体由119个基因组成,包括82个蛋白质编码基因,33个转移RNA和4个核糖体RNA基因。 在确定的基因中,16个包含一个或两个内含子,并复制了2个tRNA基因。 对PT基因组序列的比较评估表明,鉴定了1145个简单序列重复标记。 基于82种蛋白质编码基因的26种假发物种的系统发育树,将杜松样品分为两个主要进化枝,对应于Juniperus和Sabina切片。 PT基因组序列的分析表明ACCD和YCF2是两个最多态性基因。Sibirica,J。pseudosabina,j。semiglobosa和j。Davurica)。 除了两个完整的Pt基因组序列外,还注释了五种物种的Pt基因组的序列。 Sabina和J。 Seravschanica,我们先前已报告。 将这七种物种的Pt基因组序列与Pub-lic ncbi数据库中可用的杜松物种的Pt基因组进行了比较。 杜松物种的PT基因组的总长度,包括先前发表的PT基因组数据,范围为127,469 bp(j。 semiglobosa)至128,097 bp(j。 communis)。 每个杜松子质体由119个基因组成,包括82个蛋白质编码基因,33个转移RNA和4个核糖体RNA基因。 在确定的基因中,16个包含一个或两个内含子,并复制了2个tRNA基因。 对PT基因组序列的比较评估表明,鉴定了1145个简单序列重复标记。 基于82种蛋白质编码基因的26种假发物种的系统发育树,将杜松样品分为两个主要进化枝,对应于Juniperus和Sabina切片。 PT基因组序列的分析表明ACCD和YCF2是两个最多态性基因。Davurica)。除了两个完整的Pt基因组序列外,还注释了五种物种的Pt基因组的序列。Sabina和J。Seravschanica,我们先前已报告。将这七种物种的Pt基因组序列与Pub-lic ncbi数据库中可用的杜松物种的Pt基因组进行了比较。杜松物种的PT基因组的总长度,包括先前发表的PT基因组数据,范围为127,469 bp(j。semiglobosa)至128,097 bp(j。communis)。每个杜松子质体由119个基因组成,包括82个蛋白质编码基因,33个转移RNA和4个核糖体RNA基因。在确定的基因中,16个包含一个或两个内含子,并复制了2个tRNA基因。对PT基因组序列的比较评估表明,鉴定了1145个简单序列重复标记。基于82种蛋白质编码基因的26种假发物种的系统发育树,将杜松样品分为两个主要进化枝,对应于Juniperus和Sabina切片。PT基因组序列的分析表明ACCD和YCF2是两个最多态性基因。使用这两个基因对26种假发物种的系统发育评估证实,它们可以有效地用作该属中植物分析的DNA条形码。这些假发物种的测序质体提供了大量遗传数据,这些数据对于该属的将来的基因组研究很有价值。
摘要:叶绿体是通过蓝藻类共生体与宿主内共生进化而来的光合细胞器。许多研究试图分离完整的叶绿体来分析其形态特征和光合活性。尽管一些研究将分离的叶绿体引入不同物种的细胞中,但其光合活性尚未得到证实。在本研究中,我们从原始红藻 Cyanidioschyzon merolae 中分离了具有光合活性的叶绿体,并通过共培养将其整合到培养的哺乳动物细胞中。整合的叶绿体保留了其细胞内囊体的结构,并保持在细胞质中,被细胞核附近的线粒体包围。此外,整合的叶绿体在整合后至少 2 天内在培养的哺乳动物细胞中保持光系统 II 的电子传递活性。我们的自上而下的基于合成生物学的方法可以作为创造人工光合动物细胞的基础。
摘要:意大利蜡菊 (Roth) G. Don 是一种地中海药用植物,由于其独特的生物活性化合物,在化妆品、烹饪和制药领域具有巨大潜力。它最近被引入农业生态系统,增强了对自然种群遗传多样性的利用,尽管有限的分子标记使这一工作具有挑战性。在本研究中,针对叶绿体基因组中鉴定的所有 43 个 SSR(72.1% 单核苷酸、21% 二核苷酸和 6.9% 三核苷酸重复)设计了引物。使用十个精心挑选的 cpSSR 标记分析了来自 Cape Kamenjak(克罗地亚)和科西嘉岛(法国)的种群。从所有样本中扩增的初始 16 个 cpSSR 集合中,由于短长度多态性、大小同质性和无法通过等位基因长度检测到的核苷酸多态性,6 个 cpSSR 标记被删除。在检测到的 38 种单倍型中,有 32 种是其地理起源所独有的。在 Cape Kamenjak 种群中观察到的私有单倍型数量最多(检测到的 9 种中有 7 种)。根据聚类分析,Kamenjak 种群与 Capo Pertusato(南科西嘉岛)种群最为相似,尽管只有一个子单倍型是共享的。其他科西嘉种群彼此更相似。成功进行了 Helichrysum litoreum Guss. 和 Helichrysum arenarium (L.) Moench 的跨物种可移植性测试,并确定了私有等位基因。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
摘要 光合作用主要发生在叶绿体中,叶绿体的发育受核基因编码的蛋白质调控,其中五肽重复(PPR)蛋白参与细胞器RNA编辑。虽然水稻PPR蛋白家族有450多个成员,但目前只有少数蛋白被证明能影响水稻叶绿体中的RNA编辑。利用基因编辑技术创造新的水稻种质和突变体,可用于水稻育种和基因功能研究。本研究评估了OsPPR9在水稻叶绿体RNA编辑中的作用。利用CRISPR/Cas9技术获得的Osppr9突变体表现出叶片黄化和致死表型,与叶绿体发育相关的基因表达受到抑制,以及光合相关蛋白的积累。此外,OsPPR9 蛋白功能的丧失降低了 rps8 -C182、rpoC2 -C4106、rps14 -C80 和 ndhB -C611 RNA 编辑位点的编辑效率,从而影响水稻叶绿体的生长和发育。我们的数据表明,OsPPR9 在水稻叶片中高表达,并编码一个定位于叶绿体的 DYW-PPR 蛋白。此外,OsPPR9 蛋白被证明与 OsMORF2 和 OsMORF9 相互作用。总之,我们的研究结果为 PPR 蛋白在调控水稻叶绿体发育中的作用提供了新的见解。关键词:水稻 (Oryza sativa L.),PPR 蛋白,叶绿体发育,RNA 编辑 1
对沙特阿拉伯濒危药用植物 Blepharis ciliaris 的叶绿体基因组进行了测序和鉴定。采用 NOVOPlasty 技术从全基因组数据中组装出完整的叶绿体基因组。B. ciliaris 的 cp 基因组长度为 149,717 bp,GC 含量为 38.5%,呈环状四分结构;基因组含有一对反向重复序列(IRa 和 IRb 各 25,331bp),由大单拷贝(LSC,87,073 bp)和小单拷贝(SSC,16,998 bp)隔开。基因组中有 131 个基因,其中包括 79 个蛋白质编码基因、30 个 tRNA 和 4 个 rRNA;其中 113 个是特有的,其余 18 个在 IR 区重复。重复分析表明基因组包含所有类型的重复,回文出现的频率更高;分析还确定了总共 91 个简单序列重复 (SSR),其中大多数是单核苷酸 A/T,位于基因间隔区中。本研究报道了 Blepharis 属的第一个 cp 基因组,为研究 B. ciliris 的遗传多样性以及解决核心 Acanthaceae 内的系统发育关系提供了资源。
4。以下哪个成人细胞不会表现出有丝分裂?a。血细胞b。肠道内衬里的细胞。心细胞d。表皮上层的细胞5。选择不正确的语句/语句。i。属于Rhodophyceae类的明胶产生琼脂。II。 属于Phaeophyceae类的小球藻是丰富的蛋白质来源。 iii。 属于Phaeophyceae类的 laminaria用作海食。 iv。 属于叶绿体的porphyra用于制备冰淇淋。 a。我只有b。只有iii c。 II和III d。 II和IV 6。 圆形DNA在a中发现。线粒体,叶绿体,核b。核苷,线粒体,核仁c。细菌,线粒体,叶绿体d。核苷,线粒体,核7。 一个怀孕的女性为患有发育迟缓,智力低下,智力低下和皮肤异常的婴儿提供了婴儿。 这可能是由于II。属于Phaeophyceae类的小球藻是丰富的蛋白质来源。iii。laminaria用作海食。iv。属于叶绿体的porphyra用于制备冰淇淋。a。我只有b。只有iii c。 II和III d。 II和IV 6。圆形DNA在a中发现。线粒体,叶绿体,核b。核苷,线粒体,核仁c。细菌,线粒体,叶绿体d。核苷,线粒体,核7。一个怀孕的女性为患有发育迟缓,智力低下,智力低下和皮肤异常的婴儿提供了婴儿。这可能是由于
心肺旁路(CPB)是开放心脏手术期间必要的生命支持。由CPB引起的全身性炎症反应综合征(SIRS)众所周知,可以增加术后发病率和死亡率(1,2)。急性呼吸窘迫综合征(ARDS)和急性肺损伤(ALI),其特征是与SIR相关的肺水肿,在CPB和CPB之后也被诱导,显着促进了术后的发病率和死亡率(3-6)。炎症反应的成分包括补体的激活,白细胞上粘附分子的表面表达增加以及在系统性循环中存在促炎细胞因子的存在(7-12)。中性粒细胞是白细胞的主要部分,通过产生超氧化物自由基和化学介质的释放在SIR中起重要作用(12,13)。已经证明,激活的中性粒细胞是CPB引起的肺功能障碍的最重要的启动事件之一(14)。sivelestat是一种合成的,特定的,低分子量的中性粒细胞弹性酶抑制剂(15)。已显示它可以降低中性粒细胞弹性酶水平和白介素6的产生,并在体外循环期间保留中性粒细胞的可变形性(6、16、17)。几项临床研究表明,西维勒斯塔(Sivelestat)对接受CPB进行心血管手术的患者的好处(6,12)。但是,这些研究仅评估了计划的心脏手术。 与预定的心脏手术相比,紧急心血管手术通常具有更严重的ALI(15,18)。但是,这些研究仅评估了计划的心脏手术。与预定的心脏手术相比,紧急心血管手术通常具有更严重的ALI(15,18)。该药物可能会阻止SIRS的不良反应,并且可能是减轻接受紧急心血管手术的患者ALI的最佳疗法之一。因此,我们设计了这项研究,以评估Sivelestat对急诊心血管手术后ALI患者肺部保护的影响。
塔玛拉菠萝蜜(Artocarpus tamaran Becc.)是桑科菠萝蜜属的一种,该属包含 74 种植物(POWO, 2024 )。该树种树高可达 45 米,树干直径可达 1 米,板根可高达 3 米(Kochummen, 2000 )。该物种是婆罗洲的特有物种,分布在沙捞越、沙巴、加里曼丹和文莱达鲁萨兰国,具体分布在低地至丘陵混合龙脑香科森林、河边、砂岩、粘土和冲积基质上(POWO, 2024;Jarrett, 1959 )。它也曾在海拔 20 米至 1800 米的原始或古老的次生林和砍伐林中发现(Jarrett, 1959 )。根据国际自然保护联盟 (IUCN) 的红色名录分类,Artocarpus tamaran 被列为易危 A2c(根据国际自然保护联盟的红色名录分类)( IUCN, 2024 )。该物种因栖息地丧失而濒临灭绝,栖息地已被改造成人工林、砍伐、烧毁和气候影响,例如在沙巴、砂拉越和加里曼丹( IUCN, 2024 ; POWO, 2024 )。该物种的树皮可用于生产纤维材料,用于生产布料和帽子( Kulip, 2003 ; Fern2014 )、新鲜水果和煮熟或烘烤后的可食用种子( Lim, 2012 )。该树干在当地术语中被称为“ terap ”,在建筑方面具有潜在的应用价值( Kochummen,2000 年)。该树种的木材价格为 22.90 美元/立方米
