。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2024年8月19日发布。 https://doi.org/10.1101/2024.07.30.605730 doi:Biorxiv Preprint
微流体学优化实验程序,但通常需要外部泵才能精确,稳定和低流速。这些程序通常需要进行长时间实验的延长,连续操作。我们引入了双含量连续泵送机理(DSCPM),这是具有输入多路复用能力的微流体应用的低成本,精确且连续的泵。具有3D打印的外壳和标准组件,DSCPM易于制造和访问。DSCPM以每分钟的流量为单分钟,使用流体桥的整流,将注射泵的精度与连续输注相结合。我们验证了微流体“细胞陷阱”中的层流流,而不会破坏微生物的生长。comsol模拟确认了安全的剪切应力水平。我们还开发并测试了流体多路复用器,以获得更大的模块化和自动化。解决当前的泵限制,例如不连续性和高成本,DSCPM可以增强实验能力并提高效率和精度,同时增加许多领域的硬件自动化的可访问性。
磁性材料中的自旋波具有超低能量耗散和长相干长度,是未来计算技术的有前途的信息载体。反铁磁体是强有力的候选材料,部分原因是它们对外部场和较大群速度的稳定性。多铁性反铁磁体,例如 BiFeO 3 (BFO),具有源于磁电耦合的额外自由度,允许通过电场控制磁结构,从而控制自旋波。不幸的是,由于磁结构的复杂性,BFO 中的自旋波传播尚不明确。在这项工作中,在外延工程、电可调的 1D 磁振子晶体中探索了长距离自旋传输。在平行于和垂直于 1D 晶体轴的自旋传输中发现了显著的各向异性。多尺度理论和模拟表明,这种优先磁振子传导是由其色散中的群体不平衡以及各向异性结构散射共同产生的。这项工作为反铁磁体中的电可重构磁子晶体提供了途径。
摘要:由于在两种介电介质的一条有限界面上最初发现了Dyakonov表面波,因此至少有一个是各向异性的,广泛的研究,对其在具有阳性各向异性的材料的理论和体验研究中进行了研究。由于其存在的严格条件以及对位置各向异性的要求,这些波的潜在应用最初是限制的。在我们的研究中,我们介绍了一种新型的dyakonov表面波的理论预测和实验观察,该表面沿着两个具有负各向异性的介电介质之间的界面沿界面的平流传播。我们证明,由于带有两种金属板之间的浅层波导的特异性边界,因此对表面波的条件满足了各向异性介电的状态。我们通过在弱各向异性的近似中使用扰动理论来理论上研究这种模式,并证明了
©2024作者。本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许使用,共享,适应,分发和繁殖任何任何媒介或格式,只要您适当地归功于原始作者和来源,就提供了与Creative Commons许可证的链接,并指示了Ifchanges。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。文章的创意共享许可中未包含材料,并且您的预期用途不允许法定法规或超过允许的用途,您将需要直接从版权所有者那里获得persermission。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
2智能制造设备和技术的国家主要实验室,惠宗科学技术大学机械科学与工程学院(HUST),武汉430074,中国
随着温度的降低,旋转sublattice冻结的倾向,尤其是在固定中心的缺陷和/或无序周围。例如,在YBMGGAO 4的三角形拉力中,非磁离子Mg和GA之间存在位点障碍会诱导自旋玻璃行为[2]。然而,混乱并不总是对QSL状态有害。对pyrochlore氧化物[3,4]和1 T -TAS 2 [5]的研究表明,淬灭的疾病没有竞争,而是与挫败感诱发强量子逆转的合作,并可能引起新兴的旋转疾病,导致无间隙激发负责。从实验的角度来看,QSL状态不会打破任何对称性,从而使使用单个技术识别识别[6]。非弹性中子散射的作用
随着人口衰老的范围,预计到2030年,世界上近20%的人口将超过65岁,到2050年,这一数字预计将达到16亿(Feng等,2023a)。癌症的特征是异常的细胞增殖和分化,继续对全球健康构成显着威胁(Hanahan,2022; Shen等,2022; Feng等,2023b; Wang等,2023)。在2020年,全世界记录了大约1900万新的癌症病例和超过1000万癌症相关的死亡(Sung等,2021)。特别是在中国,同年有457万例新癌症病例和3000万例癌症死亡(He and Ke,2023年)。传统的癌症治疗包括放射治疗,化学疗法和手术(Jin等,2022; Sirhan等,2022; Xing等,2022; Cossociate疗法,2023年),而分子靶向的治疗和免疫检查点抑制剂已转化了肿瘤学(Chen等人(Chen et al。,20222222222222; Chan et y。 Al。,2023)。尽管取得了进步,但治疗对患者生存和生活质量的不利影响仍然是癌症治疗中的紧迫挑战(Zhang and Zhang,2020; Peng等,2022),使患者管理变得复杂(Wang YH。等,2020; Mokhtari-Hessari和Montazeri,2020)。 高通量测序是一种开创性的分子生物学技术,它推动了新的肿瘤研究方向(Walter等,2022; Larson等,2023)。 与形成对比等,2020; Mokhtari-Hessari和Montazeri,2020)。高通量测序是一种开创性的分子生物学技术,它推动了新的肿瘤研究方向(Walter等,2022; Larson等,2023)。与
在本文中,应将以下提到的隶属关系添加到作者 Jihene Malek 的现有隶属关系中。“苏塞大学应用科学与技术高等学院电子系,4003 苏塞,突尼斯”。原文已更正。
Abbreviations ADC: Antibody-drug conjugate ADCP: Antibody-dependent cell phagocytosis ADCC: Antibody-dependent cellular cytotoxicity AI: Aromatase inhibitor AKT: Protein kinase B ASCO-CAP: American Society of Clinical Oncology/College of American Pathologists CAR-T cells: Chimeric antigen receptor T cells cTNM: Clinical肿瘤淋巴结 - 纳斯症CDK:依赖细胞周期蛋白的激酶CCL5:趋化因子(C-C基序)配体5 CHI3L1:几丁质酶-3样蛋白1 CHRM1:毒蕈碱乙酰胆碱受体受体M1 DCIS M1 DCIS M1 DCIS M1 DCIS M1 DCIS:DDPCR:DDDPCR:DDDPCR:ddplet DIDIDER DIMDASE CRASSENT CONSE RIDENCASE COSSERVER DILDATE CRASSISS COMENCASS COMASE DRFFS: Early Breast Cancer Trialists' Collaborative Group EC: Epirubicin and cyclophosphamide EGFR: Epidermal growth factor receptor ER: Estrogen receptor ERBB2: Human epidermal growth factor receptor 2 (HER2) ERK: Extracellular signal-regulated kinase FDR: False discovery rate FZD: Frizzled receptors GNRH: Gonadotropin-releasing hormone GPCR: G蛋白偶联受体GPRC5D:G蛋白偶联受体C类C组5成员D HER1:人表皮生长因子受体1(EGFR)HER2:人类表皮生长因子受体2