人工智能与合作 计算社区联盟 (CCC) 四年一次的论文 Elisa Bertino(普渡大学)、Finale Doshi-Velez(哈佛大学)、Maria Gini(明尼苏达大学)、Daniel Lopresti(理海大学)和 David Parkes(哈佛大学) 人工智能 (AI) 的兴起将使人们越来越愿意将决策权交给机器。但我们不应该仅仅让机器做出影响我们的决策,还需要找到与人工智能系统合作的方式。我们迫切需要开展“人工智能与合作”方面的研究,以了解人工智能系统和人工智能与人类的系统如何产生合作行为。对人工智能的信任也很关键:信任是内在的,而且只有随着时间的推移才能获得。这里我们使用“AI”一词的最广义,正如最近的《AI 研究 20 年社区路线图》(Gil and Selman,2019 年)所用,其中包括但不限于深度学习的最新进展。如果成功,人类与 AI 之间的合作可以像人与人之间的合作一样构建社会。无论是出于内在的乐于助人的意愿,还是出于自身利益的驱动,人类社会都已经变得强大,人类物种也通过合作取得了成功。我们在“小”范围内合作——以家庭为单位、与邻居、与同事、与陌生人——并在“大”范围内作为一个全球社区寻求在商业、气候变化和裁军问题上达成合作成果。自然界中也进化出了合作,在细胞和动物之间。虽然许多涉及人类与 AI 合作的情况是不对称的,最终由人类控制,但 AI 系统变得如此复杂,以至于即使在今天,当人类只是作为被动观察者时,人类也不可能完全理解它们的推理、建议和行动。研究议程必然很广泛,涉及计算机科学、经济学、心理学、语言学、法律和哲学。事实上,合作可以意味着很多不同的事情。早期的分布式人工智能文献研究了所有共享相同效用函数并且都想要相同东西的人工智能系统。但我们也可以考虑自利、理性的代理人的经济模型,即寻求对他们个人最有利的代理人。合作也可以在这里产生。正如博弈论中经典的囚徒困境所熟知的那样,合作也可以在自利代理人之间的反复互动中产生。为了使人与人工智能系统成功合作,我们需要能够理解人类偏好、能够模拟他人行为、能够响应规范和道德结构的人工智能系统。我们需要在现行法律、制度和协调机制内运作的人工智能系统,并了解新类型的“相遇规则”在促进合作方面将发挥什么作用
合作通常会增加人类和其他物种的福利,但是激励代理人合作可能很困难。囚犯的困境提炼了这种社会困境的基本激励措施和回报:帕累托有效的结果是在主导的策略中,因此每个人都有强大的动力来自由骑行对另一个玩家。从理论上讲,众所周知,未来互动或重复的可能性是建立自私者之间合作的可能性:未来的遭遇可通过双关语威胁来激励合规性。然而,由于有无数的均衡,这是足够高的差异因素和不合作的平衡持续存在,因此研究如何发挥重复囚犯的困境是一种经验性练习。庞大的实验文献(请参阅下面的文献评论)解决了人类参与者合作的决定因素,形式和水平。我们研究自学算法如何发挥重复的囚犯困境。具体来说,我们将算法置于实验室实验中实施的相同经济环境中,并使用用于研究人类行为的工具分析其范围(Dal B´o and Fr´echette,2018年)。与人类一样,我们对决定因素,形式和合作水平感兴趣。在这些维度中的每个方面,我们都借鉴了实验文献,以了解社会困境中自学算法与人类之间的相似性和差异。首先,我们检查塑造人类合作的决定因素是否也影响算法合作。第二,我们询问算法采用哪种策略,并将其与人类的算法进行对比。最后,我们比较了人类与算法之间的合作水平,并询问哪些因素会导致差异。了解自学算法的行为至关重要(Rahwan等,2019)。毕竟,算法向人类提供建议或越来越多地决定他们。例如,算法可以自主驾驶汽车,调整金融投资组合,检测欺诈或设定价格等。某些自主算法在战略环境中运行,并与其他自学代理反复互动。这可能发生在协调问题中;例如,在选择流量路线或