一项多中心、多读者研究评估了合成创建的短 tau 反转恢复 (STIR) 脊柱 MR 图像与获取的 STIR 的比较。基于医学数字成像和通信 (DICOM) 的 DL 应用程序从矢状 T1 和 T2 图像生成了合成创建的 STIR 系列。三名神经放射科医生、一名肌肉骨骼 (MSK) 放射科医生和一名普通放射科医生对 STIR 质量进行评级并对疾病病理进行分类;评估了通常在创伤中用 STIR 评估的发现的存在/缺失情况。放射科医生以盲法随机方式评估了获取的 STIR 或合成创建的 STIR,并设有 1 个月的洗脱期。使用 10% 的非劣效性阈值评估获取和合成创建的 STIR 的可互换性。对于分类,随机引入合成创建的 STIR 预计会导致读者间一致性下降 3.23%。对于创伤,读者之间的一致性总体提高了 11.9%。两者的置信下限都超过了非劣效性阈值,表明合成 STIR 与获取的 STIR 具有可互换性。结果显示,合成 STIR 的图像质量得分高于获取的 STIR(P <.0001)。研究人员得出结论,合成 STIR 脊柱 MR 图像在诊断上可与获取的 STIR 互换,同时提供明显更高的图像质量,表明常规临床实践的潜力。研究人员还避免使用 GAN,因为 GAN 很容易在合成图像中引入源图像中不存在的结构。38
1.2.3.2 外部接口 ATCAS 的外部接口包括:a) 监视传感器:• PSR/MSSR 监视;• MSSR 监视;• ADS-B 和 ADS-C 数据链;• 多点定位;系统接收监视数据,处理信息并向控制器呈现空中情况的合成图像。b) 飞机控制器通过称为 CPDLC(控制器飞行员数据链通信)的特定协议与飞行员通信。系统接收轨迹和飞行计划信息并向飞行员发送命令。c) 相邻 ATCAS 相邻中心代表区域控制中心和进近控制。此接口主要发送和接收飞行计划协调消息,使用标准 ICAO 4444 消息或 OLDI 和 AIDC 协议。系统将与相邻中心共享监视数据。d) 时间参考系统 时间参考系统从 GPS 接收 UTC 时间并发送此信息以同步 ATCAS 工作站时间。e) 录音机 此接口用于将录音和回放系统活动与录音和回放同步。f) 操作员 他们由主控制员、助理、飞行数据操作员和技术/操作主管代表。g) AFTN 接口 当 AMHS 系统不可用时,它代表与 AFTN 的接口以接收和发送 ATS 消息。h) AMHS 接口 它代表发送和接收 ATS 消息的新接口。该系统具有通向 AFTN 的网关。i) ATFM 统一 此链接用于传输飞行计划和交通信息并协调措施以减少与流量管理相关的问题。j) 防御系统 该接口用于与防御系统交换监视信息和协调信息。
摘要 — 最近,深度学习方法,特别是卷积神经网络 (CNN),在计算机视觉领域取得了巨大突破。此外,大规模注释数据集是成功训练过程的关键。然而,在医学领域获取这样的数据集是一个巨大的挑战。为此,我们提出了一种使用循环一致性生成对抗网络 (GAN) 生成合成医学图像的数据增强方法。我们添加半监督注意模块来生成具有令人信服的细节的图像。我们将肿瘤图像和正常图像视为两个领域。所提出的基于 GAN 的模型可以从正常图像生成肿瘤图像,反过来,它也可以从肿瘤图像生成正常图像。此外,我们表明生成的医学图像可用于提高 ResNet18 在医学图像分类中的性能。我们的模型应用于三个有限的肿瘤 MRI 图像数据集。我们首先在有限的数据集上生成 MRI 图像,然后训练三种流行的分类模型以获得最佳的肿瘤分类模型。最后,我们使用经典的数据增强方法使用真实图像训练分类模型,使用合成图像训练分类模型。这些训练模型之间的分类结果表明,与经典的数据增强方法相比,所提出的 SAG-GAN 数据增强方法可以提高准确率和 AUC。我们相信所提出的数据增强方法可以应用于其他医学图像领域,并提高计算机辅助诊断的准确性。索引词——生成对抗网络 (GAN)、数据增强、注意模块、医学图像处理
机器学习 描述 监督学习 机器学习算法从标记的训练数据中学习,其中每个示例都与其对应的目标输出配对。该算法从这些标记数据中进行概括,以根据学习到的模式进行预测或对新的、未见过的实例进行分类。无监督学习 涉及从未标记的数据中学习模式和结构,而没有明确的目标输出。该算法识别数据中的固有关系、集群或模式,以获得洞察力并理解底层信息。半监督学习 该算法从标记和未标记数据的组合中学习。通过利用未标记数据和标记数据,该算法旨在提高其预测性能并利用可用的其他信息。强化学习 一种学习范式,其中代理通过采取行动并以奖励或惩罚的形式接收反馈来学习与环境交互。代理旨在通过迭代的探索和利用过程最大化其累积奖励。深度学习 受人脑启发的机器学习子集,使用具有多层的神经网络来处理和分析大型数据集。检测复杂模式的能力推动了图像和语音识别、自然语言处理等领域的进步。生成式人工智能 基于深度学习的人工智能模型,旨在生成类似于它们所训练的输入数据的新内容。示例包括生成合成图像和视频的生成对抗网络 (GAN),以及生成逼真文本内容的大型语言模型 (LLM),如 GPT-4 和 Palm 2。
估计不合作航天器的姿态是一个重要的计算机视觉问题,它有助于在轨道上部署基于视觉的自动系统,其应用范围从在轨服务到空间碎片清除。随着计算机视觉的总体趋势,越来越多的工作开始关注利用深度学习 (DL) 方法解决这个问题。然而,尽管研究阶段的成果令人鼓舞,但阻碍在实际任务中使用此类方法的主要挑战仍然存在。特别是,这种计算密集型算法的部署仍未得到充分研究,而在合成图像上进行训练和在真实图像上进行测试时的性能下降仍有待缓解。本调查的主要目标是全面描述当前基于 DL 的航天器姿态估计方法。次要目标是帮助确定有效部署基于 DL 的航天器姿态估计解决方案以实现可靠的自主视觉应用的局限性。为此,本调查首先根据两种方法总结了现有算法:混合模块化流水线和直接端到端回归方法。本文不仅从姿势准确性的角度对算法进行了比较,还重点关注了网络架构和模型大小,同时考虑到了潜在的部署。然后,讨论了用于训练和测试这些方法的当前单目航天器姿势估计数据集。还讨论了数据生成方法:模拟器和测试平台、合成生成的图像与实验室/空间收集的图像之间的领域差距和性能下降以及潜在的解决方案。最后,本文提出了该领域的开放研究问题和未来方向,并与其他计算机视觉应用进行了比较。
摘要 目的在产科超声 (US) 扫描中,学习者根据二维 (2D) US 图像在脑海中构建胎儿的三维 (3D) 地图的能力代表了技能习得中的重大挑战。我们的目标是构建一个 US 平面定位系统,用于 3D 可视化、训练和引导,而无需集成额外的传感器。方法我们提出了一个回归卷积神经网络 (CNN),使用图像特征来估计任意方向的 US 平面相对于胎儿大脑中心的六维姿势。该网络在从幻影 3D US 体积获取的合成图像上进行训练,并在真实扫描上进行微调。训练数据是通过将 US 体积在 Unity 中以随机坐标切成成像平面并在标准经脑室 (TV) 平面周围更密集地切片来生成的。结果使用幻影数据,随机平面和靠近 TV 平面的平面的中位误差分别为 0.90 mm/1.17 ◦ 和 0.44 mm/1.21 ◦。对于真实数据,使用具有相同胎龄 (GA) 的不同胎儿,这些误差为 11.84 mm/25.17 ◦。平均推理时间为每平面 2.97 毫秒。结论所提出的网络可靠地定位了幻影数据中胎儿大脑内的超声平面,并成功地从与训练中类似的 GA 中推广了看不见的胎儿大脑的姿势回归。未来的发展将扩大预测范围,以预测整个胎儿的体积,并评估其在获取标准胎儿平面时基于视觉的徒手超声辅助导航的潜力。
磁共振成像 (MRI) 基于强磁场提供内脏器官的不同组织对比度图像。尽管 MRI 在频繁成像方面具有非侵入性优势,但目标区域中的低对比度 MRI 图像使组织分割成为一个具有挑战性的问题。本文展示了图像到图像转换技术生成合成高组织对比度 (HTC) 图像的潜在优势。值得注意的是,我们采用了一种具有注意机制的新型循环生成对抗网络 (CycleGAN) 来增加底层组织内的对比度。注意力模块以及对 HTC 图像的训练引导我们的模型收敛到某些组织。为了提高 HTC 图像的分辨率,我们采用多阶段架构将焦点集中在一种特定组织作为前景,并在每个阶段滤除不相关的背景。这种多阶段结构还通过减小源域和目标域之间的差距来减轻合成图像的常见伪影。我们展示了我们的方法在脑部 MRI 扫描(包括胶质瘤)中合成 HTC 图像的应用。我们还在端到端和两阶段分割结构中使用 HTC MRI 图像来确认这些图像的有效性。在 BraTS 2018 数据集上对三个竞争性分割基线进行的实验表明,将合成的 HTC 图像纳入多模态分割框架中可分别将整个肿瘤、肿瘤核心和增强肿瘤的平均 Dice 得分提高 0.8%、0.6% 和 0.5%,同时从分割过程中消除了一个真实的 MRI 序列。
摘要 - X射线血管造影中冠状动脉片段和狭窄的冠状动脉片段和狭窄的检测和诊断至关重要,但是,原始图像中图像质量的变化,噪声和伪影造成了当前算法的明确困难。这些问题通过传统方法对有意义的分析构成了挑战,这损害了检测算法的效率。为了克服这些缺点,当前的研究提出了一种新的集成深度学习技术,该技术将深度卷积神经网络(DCNN)与双重条件检测中的生成对抗网络(GAN)相结合。从X射线血管造影图像中提取的详细特征学习是通过DCNN进行的,其中考虑了血管结构和自动病理区域的检测。gan的使用是用合成图像,扭曲和视觉噪声进一步丰富数据集,这将使模型更容易受到各种图像条件的影响。两种方法都将有助于更好地分类正常和病理区域,并且对所获得图像的质量的敏感性降低。因此,提出的方法显示了诊断准确性的提高,作为心血管系统临床决策的坚实基础。已通过以下评估指标证明了建议方法的功效:97.9%的F1得分,98.7%的精度,98.2%的精度和98%的召回率。它通过在困难的成像环境中提供更好的结果来揭示了使用算法进行心血管评估的决定性进步。与传统方法相比,结果证明了牙菌斑和狭窄识别的更高灵敏度和准确性,这证实了使用建议的DCNN-GAN方法来考虑医学成像中实际波动的效率。
从医学图像中准确分割脑肿瘤对于诊断和治疗计划非常重要,而且通常需要多模态或对比度增强图像。然而在实践中,患者的某些模态可能缺失。合成缺失的模态有可能填补这一空白并实现高分割性能。现有方法通常分别处理合成和分割任务,或者将它们联合考虑,但没有对复杂的联合模型进行有效的正则化,导致性能有限。我们提出了一种新颖的脑肿瘤图像合成与分割网络 (TISS-Net),该网络可以高性能地端到端获得合成的目标模态和脑肿瘤分割。首先,我们提出了一个双任务正则化生成器,可以同时获得合成的目标模态和粗分割,它利用肿瘤感知合成损失和可感知正则化来最小化合成和真实目标模态之间的高级语义域差距。基于合成图像和粗分割,我们进一步提出了一个双任务分割器,它可以同时预测细化分割和粗分割中的误差,其中引入这两个预测之间的一致性以进行正则化。我们的 TISS-Net 通过两个应用进行了验证:合成 FLAIR 图像用于整个神经胶质瘤分割,合成增强 T1 图像用于前庭神经鞘瘤分割。实验结果表明,与现有模态的直接分割相比,我们的 TISS-Net 大大提高了分割精度,并且优于最先进的基于图像合成的分割方法。2023 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
生成的人工智能是5.0行业的基本创新,它已大大改变了创建视觉内容的过程。AI几十年前开始了其发展,但是公众认识到该技术已实现的不可思议。营销是人工智能创建的图像具有决定性因素的领域之一。企业可以在市场上变得更加灵活,改变其营销策略并通过使用合成图像创建来保留资源。但是,要使AI广泛传播,有必要了解生成的图像的所有功能,其创建过程以及消费者对在营销活动中使用AI的看法。年轻一代在他们的选择方面非常有选择性,并且意识到自己的消费,甚至在选择产品时,即使是次要因素也可能变得至关重要。因此,有必要找出Z世代在营销中使用AI的感知。为了确定这一点,已经研究了AI技术的功能,以及AI生成的内容可能对公司特别有益的应用领域。定量和定性数据进行广泛的分析,该调查参与了该研究人群的91人参加,并对其他国家市场的二级数据进行了分析以比较结果。但是,使用AI图像时,企业必须考虑许多重要方面。由于这项研究的结果,据透露,AI生成的图像并未以吸引注意力而对人制造的图像承认,并且可以在营销的各个领域中成功使用,而芬兰的Z世代也可以对AI视觉广告产生积极的印象。一般而言,年轻一代在图像创建中对AI表现出了开放的思想,在维持透明度和道德原则的条件下将其视为对企业和营销策略的积极影响。该研究的结果可能对芬兰公司的营销部门,商业战略家和AI开发人员优化AI在营销中的使用
