使用t 1作为输出使用t 2获得q 1和λ1,以获取q 2和λ2作为输出构建构建构建d +ρvvt,摘要λ1,λ2,q 1,q 1和q 2找到d +ρvv t
b'genation 的 C3 和 C2 位尚未开发。在此,我们报道了一种无催化剂获取 1-芳基 2,3-二碘咔唑 [7,8] 的方法,其中涉及碘转位(方案 1D)。值得注意的是,我们的方案允许在三个连续位置 [9] 即 C1、C2 和 C3 对咔唑核心进行可控官能化。环化前体 (碘吲哚基)炔醇 1a \xe2\x80\x93 n 是使用已知程序由适当的吲哚-2-甲醛制备的。[5] 我们的旅程始于研究苯基取代炔醇 1a 作为模型底物的反应(表 1)。 [10] 我们研究了 1a 与几种碘化试剂(如 I 2 、NIS、ICl 和 Ipy 2 BF 4 )的反应。在碳酸钠存在下,在异丙醇中,在 15 °C 下使用 ICl [11] 可有效实现串联碘环化-碘移位。使用 1.1 倍过量的 ICl 可得到三环 2a ,产率为 50%(表 1,条目 5),而使用 2.5 倍过量的 ICl 可得到所需的杂环,产率为 60%(表 1,条目 3)。通过对粗反应混合物进行 TLC 和 1 H NMR 分析观察到总转化率,未检测到副产物或聚合反应。然而,在柱层析纯化 2,3-二碘-咔唑 2a 的过程中观察到一些分解,这可能是导致分离产率适中的原因。值得注意的是,重排的 1-苯基-2,3-二碘-咔唑 2a 是唯一的区域异构体。使用有机碱代替 K 2 CO 3 或不同的溶剂'
首席研究员:Theodore Johnson 医学博士、哲学博士。行业赞助(IND# 120813)(Lumos Pharma, Inc.)基金会资助:ALSF (BTIG)、CKc、Press On、NNCCF 等。Clinicaltrials.gov #: NCT02502708 研究药物:Indoximod 入组目标:54-66 名患者实际入组人数:81 名患者
Kristen M. Flynn、Kolby L. White 和 Mohammad Movassaghi* 麻省理工学院化学系,美国马萨诸塞州剑桥 02139 电子邮件:movassag@mit.edu
作者:J Li · 2021 · 被引用 5 次 — 第二军医大学,上海,中华人民共和国。中国。3宁夏药学院药物化学系。医科大学...
AIM:升高的炎症信号传导已显示在糖尿病肾脏疾病(DKD)中起重要作用。我们以前开发了一种新的抗炎化合物LG4。在本研究中,我们检验了以下假设:LG4可以通过抑制炎症并确定基本机制来预防DKD。方法:使用链蛋白酶诱导的1型糖尿病小鼠开发DKD并评估LG4对DKD的影响。为了确定LG4的潜在靶标,合成了与生物素连接的LG4并进行蛋白质组微阵列筛选。在HG挑战的SV40MES13细胞中研究了LG4的细胞机制。结果:尽管LG4治疗对体重和血糖水平没有影响,但它明显逆转了高血糖诱导的T1DM小鼠肾脏的病理变化和纤维化。重要的是,通过LG4处理,通过NF-κB激活和TNFα和IL-6过表达证明了高血糖诱导的肾脏炎症。蛋白体微阵列筛选表明JNK和ERK是LG4的直接结合蛋白。lg4显着降低了HG诱导的JNK和ERK磷酸化以及随后在体内和体外的NF-κB激活。此外,LG4与JNK或ERK抑制剂的存在中没有在HG挑战的中敏细胞中显示出进一步的抗炎作用。结论:LG4通过抑制ERK/JNK介导的糖尿病小鼠的炎症表现出重新保护活性,表明LG4可能是DKD的治疗剂。关键字:吲哚-2-羧酰胺衍生物,糖尿病肾脏疾病,炎症,MAPK,NF-κB
温莎大学化学与生物化学系,温莎401号,温莎,on,n9b 3p4,加拿大,加拿大N9B 3P4
摘要。背景/目的:三阴性乳腺癌 (TNBC) 是一种乳腺癌亚型,具有高度侵袭性,预后不良,对治疗的反应不同。本研究调查了伏立诺他和吲哚-3-甲醇 (I3C) 在调节 TNBC 中通常不表达的关键受体方面的作用。材料和方法:使用实时 PCR、免疫染色和蛋白质印迹,在四种不同的 TNBC 细胞类型中检查了雌激素受体 α (ER)、孕激素受体 (PR) 和人表皮生长因子受体 2 (HER2) 受体的重新表达。结果:使用伏立诺他和 I3C 在三种亚型中重新表达 ERα。还检测到伏立诺他重新表达 PR。伏立诺他和 I3C 均未导致 HER2 受体重新表达。还注意到生长和对他莫昔芬的敏感性显着下降。结论:本研究结果表明,伏立诺他和 I3C 通过多种途径调节某些 TNBC 亚型中关键受体的重新表达,并且这些影响可受到 TNBC 分子特征的影响。
在 1500-1700 nm 光谱范围内进行的荧光成像(称为近红外 IIb,NIR-IIb)由于其光子散射效应小且自发荧光最小,因此有望实现高成像对比度和空间分辨率。尽管已经开发出用于 NIR-IIb 生物成像的无机和有机探针,但大多数处于临床前阶段,阻碍了进一步的临床应用。在此,我们展示了美国食品和药物管理局 (FDA) 批准的药物吲哚菁绿 (ICG) 在溶解到不同的蛋白质溶液(包括人血清白蛋白、大鼠胆汁和胎牛血清)中时表现出大量的 NIR-IIb 发射。我们在 NIR-IIb 窗口中进行荧光成像,以可视化淋巴系统、肝外胆道和脑血管的结构。结果表明,蛋白质促进了体内 ICG 的 NIR-IIb 发射,并且与传统的近红外 II (NIR-II) 荧光成像相比,使用 ICG 进行 NIR-IIb 成像可保持更高的信号背景比 (SBR) 和空间分辨率。我们的研究结果证实,使用临床批准的药物 ICG 可以成功进行 NIR-IIb 荧光成像。希望使用适当的 ICG-蛋白质溶液在 NIR-IIb 区域进行进一步的临床应用。
吲哚-3-乙酰胺 (IAM) 是某些植物病原菌中第一个被证实的生长素生物合成中间体。外源施用 IAM 或通过过表达拟南芥中的细菌 iaaM 基因产生 IAM 会导致生长素过量产生表型。然而,植物是否使用 IAM 作为生长素生物合成的关键前体仍不确定。在此,我们报告了从正向遗传筛选中分离拟南芥中的 IAM 水解酶 1 (IAMH1) 基因,该筛选用于显示正常生长素敏感性的 IAM 不敏感突变体。IAMH1 有一个相近的同源物,名为 IAMH2,位于拟南芥 IV 染色体上 IAMH1 的旁边。我们使用我们的 CRISPR/Cas9 基因编辑技术生成了 iamh1 iamh2 双突变体。我们发现,IAMH 基因的破坏使拟南芥植物对 IAM 处理产生抗性,同时也抑制了 iaaM 过表达表型,这表明 IAMH1 和 IAMH2 是拟南芥中将 IAM 转化为 IAA 的主要酶。iamh 双突变体没有表现出明显的发育缺陷,这表明 IAM 在正常生长条件下在生长素生物合成中不起主要作用。我们的研究结果为阐明 IAM 在生长素生物合成和植物发育中的作用奠定了坚实的基础。