celecoxib,双氯芬酸粉,外沟,埃索多拉克,弗拉伯利蓬罗芬,布普罗芬,吲哚美辛,酮酸,酮洛洛芬,酮洛洛克,麦克洛氯氟烯酸酯,美昔康,nabumeketone,nabumeketone,nabumeketone,naproxen,naproxen,piroxicam,sulindacicam,sulindacicam,sulindacicam,sulindacicam >>>>>>>>>>>>>
H2S + K/A 可能的生物 变形杆菌、爱德华氏菌、沙门氏菌、弗氏柠檬酸杆菌 你对这些知识了解多少? 2-4 进行并解释吲哚、MR-VP、柠檬酸盐、尿素酶、运动性和蔗糖发酵试验。陈述这些试验的目的和原理,并根据结果识别肠杆菌科的成员。描述细菌和病毒的繁殖和增殖方式。利用无菌技术安全处理微生物。应用各种实验室技术识别微生物的类型。识别主要微生物群的结构特征,比较原核细胞和真核细胞,对比各种微生物群的生理和生物化学。培养基:蔗糖发酵液、胰蛋白胨肉汤、MR-VP 肉汤、柠檬酸盐斜面、尿素斜面、运动琼脂。设备:接种线和接种环、原种培养物(产气克雷伯菌、大肠杆菌、奇异变形杆菌、肺炎克雷伯菌)。试剂:Kovac 试剂、甲基红、Barritt 试剂 A 和 B。肠杆菌科的革兰氏阴性杆菌在临床微生物实验室中很常见。这些细菌通常被称为“肠道菌”,是正常肠道微生物群的一部分。由于它们具有相似的革兰氏染色结果和细胞形态,因此需要进行生化测试以进行识别。编码在细菌基因组中的生化酶为每种菌种形成独特的“指纹”。从历史上看,IMViC 测试用于识别肠道菌。该首字母缩略词代表吲哚、甲基红、Voges-Proskauer 和柠檬酸盐测试。大肠杆菌曾被用作食物和水源中粪便污染的指标。虽然肠杆菌与大肠杆菌相似,但它在土壤和草丛中广泛存在,因此它是一种不太可靠的指标。大肠杆菌、克雷伯氏菌、肠杆菌和变形杆菌通常是正常肠道微生物群的一部分,但在不同情况下会导致疾病。真正的肠道病原体包括沙门氏菌,它因“食物中毒”而导致伤寒和胃肠炎,以及志贺氏菌,它因“食物中毒”而导致细菌性痢疾。市面上有 Enterotube 和 API20E 等商业试剂盒系统可用于识别肠杆菌科。此练习需要微型细菌分析练习小组工作。小组中的每个人都将使用一种彩色点培养物。有四种蔗糖发酵液测试可供选择。1. 获取蔗糖发酵液,其中含有糖和 pH 指示剂。2. 使用便签创建标签,上面写有您的姓名、指定的生物和培养基类型。 3. 从琼脂平板上取少量细菌,加入到每个发酵管中。 4. 培养发酵管直至下一次实验。培养后,观察每个蔗糖发酵管的外观: - 黄色发酵液:阳性(发酵蔗糖) - 红色发酵液:阴性(不发酵蔗糖) 将发酵管丢弃在实验室后面的废弃架中。 尿素酶测试 获取尿素琼脂斜面并贴上您的姓名、指定生物和培养基类型标签。 使用无菌环将细菌添加到整个斜面中。 孵育直到下一次实验课。 孵育后,观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。 吲哚测试 获取胰蛋白胨肉汤并贴上您的姓名、指定生物和培养基类型标签。 使用无菌环向每种培养物中添加少量细菌。 孵育直到下一次实验课。孵育后,向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获得一个 MRVP 肉汤管并贴上标签,写上您的名称、指定生物和培养基类型。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管孵育至下一次实验课,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液管将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的测试结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。尿素酶测试 获取尿素琼脂斜面并贴上您的名称、指定生物和培养基类型标签。用无菌环将细菌添加到整个斜面中。孵育至下次实验课。孵育后,观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼色肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。吲哚测试 获取胰蛋白胨肉汤并贴上您的名称、指定生物和培养基类型标签。用无菌环向每种培养物中添加少量细菌。孵育至下次实验课。孵育后,向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。 MR-VPP 测试 准备一个 MRVP 肉汤管,并在上面贴上您的姓名、指定生物和培养基类型标签。使用无菌环将细菌添加到每个培养物中。孵育至下一次实验。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 孵育接种管直至下一次实验,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:孵育后,使用转移吸量管将接种的肉汤分成两个标记为“MR”和“VP”的管。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样本被丢弃在实验室的废弃架上。检测结果表明:大肠杆菌和奇异变形杆菌运动性呈阳性,而肺炎克雷伯菌和沙门氏菌呈阴性。由于缺乏志贺氏菌,未进行检测。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯菌和大肠杆菌的检测呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他确定了主要组织相容性复合体基因,该基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。 Fc 受体以及 T 细胞和 B 细胞识别抗原和协作产生抗体反应的独特方式都是由 Benacerraf 发现的。尿素酶测试 获取尿素琼脂斜面并贴上您的名称、指定生物和培养基类型标签。用无菌环将细菌添加到整个斜面中。孵育至下次实验课。孵育后,观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼色肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。吲哚测试 获取胰蛋白胨肉汤并贴上您的名称、指定生物和培养基类型标签。用无菌环向每种培养物中添加少量细菌。孵育至下次实验课。孵育后,向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。 MR-VPP 测试 准备一个 MRVP 肉汤管,并在上面贴上您的姓名、指定生物和培养基类型标签。使用无菌环将细菌添加到每个培养物中。孵育至下一次实验。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 孵育接种管直至下一次实验,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:孵育后,使用转移吸量管将接种的肉汤分成两个标记为“MR”和“VP”的管。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样本被丢弃在实验室的废弃架上。检测结果表明:大肠杆菌和奇异变形杆菌运动性呈阳性,而肺炎克雷伯菌和沙门氏菌呈阴性。由于缺乏志贺氏菌,未进行检测。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯菌和大肠杆菌的检测呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他确定了主要组织相容性复合体基因,该基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。 Fc 受体以及 T 细胞和 B 细胞识别抗原和协作产生抗体反应的独特方式都是由 Benacerraf 发现的。观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。吲哚测试 获取胰蛋白胨肉汤并贴上您的名称、指定生物和培养基类型标签。使用无菌环向每种培养物中添加少量细菌。孵育至下一次实验课。孵育后,向每种培养物中添加 10 滴 Kovac 试剂: - 红环:阳性(产生吲哚) - 无红环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获取 MRVP 肉汤管并贴上您的名称、指定生物和培养基类型标签。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。培养后,观察 MRVP 肉汤的外观: - 红环:阳性(通过混合酸途径发酵葡萄糖) - 无红环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管培养至下一个实验环节,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液器将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架中。测试结果表明:大肠杆菌和奇异变形杆菌具有阳性运动能力,而肺炎克雷伯菌和沙门氏菌则呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的尿素酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯菌和大肠杆菌的检测结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他确定了主要组织相容性复合体基因,该基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Benacerraf 发现了 Fc 受体,以及 T 细胞和 B 细胞识别抗原并协作产生抗体反应的独特方式。观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。吲哚测试 获取胰蛋白胨肉汤并贴上您的名称、指定生物和培养基类型标签。使用无菌环向每种培养物中添加少量细菌。孵育至下一次实验课。孵育后,向每种培养物中添加 10 滴 Kovac 试剂: - 红环:阳性(产生吲哚) - 无红环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获取 MRVP 肉汤管并贴上您的名称、指定生物和培养基类型标签。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。培养后,观察 MRVP 肉汤的外观: - 红环:阳性(通过混合酸途径发酵葡萄糖) - 无红环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管培养至下一个实验环节,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液器将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架中。测试结果表明:大肠杆菌和奇异变形杆菌具有阳性运动能力,而肺炎克雷伯菌和沙门氏菌则呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的尿素酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯菌和大肠杆菌的检测结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他确定了主要组织相容性复合体基因,该基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Benacerraf 发现了 Fc 受体,以及 T 细胞和 B 细胞识别抗原并协作产生抗体反应的独特方式。向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获得一个 MRVP 肉汤管并贴上标签,写上您的名称、指定生物和培养基类型。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管孵育至下一次实验课,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液管将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的测试结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获得一个 MRVP 肉汤管并贴上标签,写上您的名称、指定生物和培养基类型。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管孵育至下一次实验课,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液管将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的测试结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液器将接种的肉汤分离到两个标记为“MR”和“VP”的管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,没有测试志贺氏菌。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的检测结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液器将接种的肉汤分离到两个标记为“MR”和“VP”的管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,没有测试志贺氏菌。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的检测结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。
知途径; 虚线代表未知途径; 图2(在线颜色)萜类,生物碱和苯丙烷的生物合成途径。萜类生物合成的途径可以分为三个阶段。第一阶段:IPP或DMAPP由G3P和丙酮酸或乙酰辅酶A作为底物产生;第二阶段,IPP和DMAPP用作底物来生成萜烯前体GPP,FPP和GGPP。第三阶段:GPP,FPP和GGPP在TPS的作用和修饰酶的作用下产生特定的萜类化合物。涉及萜类合成途径的酶包括:DXS,DXR,AACT,HMGS,IDI,GPS,FPS,FPS,GGPPS,GGPPS,ADS,CPS,CPS,CYP76AK2,CYP76AK2,CYP76AK3,CYP76AK3,PDS,PPTA / G,PPTA / G,CYP5150L8,和CYP505DD13D13。生物碱使用氨基酸作为其前体。4-羟基苯基甲醛和多巴胺转化为(S) - 霉菌,这是苄基等喹啉生物碱的前体;色素通过吲哚途径从分支酸合成,IPP/DMAPP通过虹膜素途径转化为secologinin。色素和secologanin被转化为严格辛汀,这是单二烯吲哚吲哚生物碱的常见前体。涉及生物碱合成途径的酶包括:NCS,TNMT,MSH,SOMT,TDC,CYP719A19,STOX,COOMT,COOMT,STR,SGD,SGD,4'OMT,G10H,G10H,G10H,SLS,SLS,LAMT和HSS。苯丙烷合成途径始于苯丙氨酸。苯丙氨酸被催化至4-甲基二氧化碳,该COA与丙二酰辅酶A反应形成类黄酮,并与3,4-二羟基苯乙酸形成酚酸。参与苯丙烷合成途径的酶包括:PAL,C4H,4CL,CHS,IFS,CHI,CHI,F3H,DFR,ANS,GTS,GTS,C3H,CCR,CCR,RAS和LAC;黄色块代表苯丙烷;蓝色块代表生物碱;绿色块代表萜烯;实线代表已知途径;虚线代表未知的途径;两条固体/虚线表示多步反应
摘要肠道轴在呼吸道感染期间至关重要,包括流感病毒(IAV)感染。在本研究中,我们使用了高分辨率的shot弹枪元基因组学和靶向代谢组学分析来表征小鼠肠道肠道微生物群的组成和元倾斜度中与流感相关的变化。我们观察到7天(d)7天的分类级变化,包括明显减少乳酸杆菌科和双歧杆菌科的成员,以及akkermansia muciniphila的丰度增加。在D14上,某些物种持续存在扰动。宏基因组数据的功能尺度分析揭示了几种代谢途径的短暂变化,尤其是导致短链脂肪酸(SCFA),多胺和色氨酸代谢物的瞬时变化。对血清的定量靶向代谢组学分析揭示了特定类别的肠道微生物群代谢产物的变化,包括SCFAS,三甲胺,多胺和含吲哚的色氨酸代谢物。在D7上观察到吲哚-3-丙酸(IPA)血液水平的明显降低。微生物群相关的代谢产物的变化与分类单元丰度和疾病标志物水平的变化相关。特别是,IPA与一些乳酸杆菌科和双歧杆菌科(limosilactobacillus reuteri,Animalis limosilactobacillus)正相关,并与细菌M7,病毒载量和炎症标志物呈负相关。在患病动物中补充IPA可减少病毒载量,并降低局部(肺)和全身炎症。用靶向IPA产生细菌的抗生素治疗感染前的抗生素,从而增强了病毒载量和肺部炎症,这是补充IPA抑制的作用。这种综合的宏基因组 - 代谢组分分析的结果强调了IPA是导致流感结果的重要因素和潜在的疾病严重性生物标志物。
抽象背景将免疫检查点抑制剂(ICI)与化疗相结合已成为缺乏驱动器基因突变的非小细胞肺癌(NSCLC)患者的标准治疗方法。可靠的生物标志物对于预测治疗结果至关重要。来自各种癌症的新兴证据表明,对血清代谢产物的早期评估可以作为预测结果的宝贵生物标志物。本研究旨在鉴定与经过一线或二线治疗患者的治疗结果相关的代谢产物,并使用程序性细胞死亡1(PD-1)抑制剂加化学疗法。方法200患者接受一线或二线PD-1抑制剂加化疗,50例接受一线化学疗法的患者参加了这项研究。将200例接受联合治疗的患者分为发现集(n = 50)和验证集(n = 150)。基于无进展的生存PFS标准(PFS≥12和PFS <12个月),将这些集合进一步分为响应和非回答组。血清样品,以进行未靶向的代谢组学分析,目的是鉴定和验证可以预测免疫疗法和化学疗法的功效的生物标志物。此外,经过验证的代谢产物根据其中位数分为高和低类别,并使用COX回归模型在接受联合治疗的患者中分析了与PFS的关系。值得注意的是,在预后较差的该组中观察到了这两种代谢产物的上调。在化学疗法影响后的结果是,在发现和验证集中都确定了两个显着的差异代谢产物:N-(3-吲哚基乙酰基)-L-丙氨酸和甲烷基(VIP> 1和P <0.05)。在对PFS的单变量分析中,较低水平的N-(3-吲哚基乙酰基)-L-丙氨酸与较长的PFS相关(HR = 0.59,95%CI,0.41至0.41至0.84,P = 0.003),延长的PF和延长的PF表示,甲基含量较低(HR = 0.96)0.96. HR = 0.67,95%,95%,95%,95%,95%,95%,95%,95%,95%,95%,95%,含量p = 0.029)。在PFS的多元分析中,较低水平的N-(3-吲哚基乙酰基)-L-丙氨酸与较长的PFS显着相关(HR = 0.60、95%CI,0.37至0.98,p = 0.041)。
蠕虫寄生虫是来自各种分类家庭的一组复杂的后生动物。排泄物分泌(ES)副产品,由表面活的寄生虫分泌,似乎调节了宿主对蠕虫感染的免疫反应。这项研究旨在研究Helminth寄生虫的ES抗原对结直肠细胞活力的影响。蠕虫在无菌PBS冲洗后,在37°C的磷酸盐缓冲盐水(PBS X1)中培养24小时。使用砂浆和杵,使用PBS剧烈压碎蠕虫。使用0.22 µM过滤器提取获得的排泄分泌(ES)抗原,并在-20°C下储存以进行进一步测定。对于LCM,使用安捷伦Zorbax Eclipse加C18快速分辨率HT分析提取物的100 µL。使用CRC细胞系HCT 116。细胞活力和MTT分析。液相色谱和质谱法(LCM)数据表明,ES抗原含有代谢化合物,即脂肪酸,氨基醇,吲哚,吲哚,固醇,糖苷和鞘脂。对于Ascaris Lumbricoides LCMS分析,检测到约405个代谢峰。通过数据库检测到58个,而检测到的几种化合物具有抗癌特性。MTT分析表明,与对照组相比,在24小时和48小时暴露后,所有处理的细胞均显示细胞活力降低。初步研究表明,来自Ascaris Lumbricoides的ES抗原具有降低HCT116 CRC细胞系的细胞活力的能力。需要进一步的研究来检查ES抗原对CRC细胞系的细胞周期停滞和凋亡作用。
氮是植物生长的关键元素,可促进植物的生机、光合作用和整体活力。本研究重点是从孟加拉国库尔纳市孙德尔本斯的无瓣海桑根际中分离、鉴定和鉴定固氮细菌,目的是评估它们作为生物肥料的潜力。尽管孙德尔本斯的微生物多样性丰富,但由于培养困难,目前鉴定出的种类不到 5-10%,这限制了对其应用的探索。在本研究中,使用无氮培养基(包括酵母提取物甘露醇琼脂 (YEMA) 和 Burks 培养基)分离固氮细菌,然后进行氨化试验以选择产氨细菌。该过程产生了十种能够产生吲哚-3-乙酸 (IAA) 的固氮细菌分离物。进行了各种生化测试,包括氧化酶、过氧化氢酶、甲基红、吲哚、脲酶、柠檬酸、三糖铁和淀粉水解。这些分离物被命名为 AK1 至 AK10,分别被鉴定为 Rossellomorea sp.、Clostridium sp.、Achromobacter sp.、Pseudomonas sp.、Gluconacetobacter sp.、Scytonema sp.、Pseudomonas sp.、Nesterenkonia sp.、Gluconacetobacter sp. 和 Bacillus sp.。此外,分离物 AK1、AK3、AK4 和 AK10 已通过 16S rRNA 测序得到确认。盆栽试验进一步表明,分离物 AK-1 显著刺激了玉米幼苗的生长和发育。未来需要研究这些细菌分离物对作物产量和种子质量的影响,以更好地确定它们是否适合用作生物肥料。
b'genation 的 C3 和 C2 位尚未开发。在此,我们报道了一种无催化剂获取 1-芳基 2,3-二碘咔唑 [7,8] 的方法,其中涉及碘转位(方案 1D)。值得注意的是,我们的方案允许在三个连续位置 [9] 即 C1、C2 和 C3 对咔唑核心进行可控官能化。环化前体 (碘吲哚基)炔醇 1a \xe2\x80\x93 n 是使用已知程序由适当的吲哚-2-甲醛制备的。[5] 我们的旅程始于研究苯基取代炔醇 1a 作为模型底物的反应(表 1)。 [10] 我们研究了 1a 与几种碘化试剂(如 I 2 、NIS、ICl 和 Ipy 2 BF 4 )的反应。在碳酸钠存在下,在异丙醇中,在 15 °C 下使用 ICl [11] 可有效实现串联碘环化-碘移位。使用 1.1 倍过量的 ICl 可得到三环 2a ,产率为 50%(表 1,条目 5),而使用 2.5 倍过量的 ICl 可得到所需的杂环,产率为 60%(表 1,条目 3)。通过对粗反应混合物进行 TLC 和 1 H NMR 分析观察到总转化率,未检测到副产物或聚合反应。然而,在柱层析纯化 2,3-二碘-咔唑 2a 的过程中观察到一些分解,这可能是导致分离产率适中的原因。值得注意的是,重排的 1-苯基-2,3-二碘-咔唑 2a 是唯一的区域异构体。使用有机碱代替 K 2 CO 3 或不同的溶剂'
迄今为止,靶向嵌合体(Protac)技术的蛋白水解已成功地用于介导蛋白酶体诱导的几种药物靶标的降解,这主要与肿瘤学,免疫失调和神经退行性疾病有关。另一方面,其在抗病毒药物发现领域的剥削仍处于起步阶段。最近,我们描述了两个基于吲哚美辛(INM)的protac,它们对冠状病毒表现出广谱抗病毒活性。在这里,我们报告了一系列基于INM的Protac的设计,合成和表征,这些protac招募了Von-Hippel Lindau(VHL)或Cereblon(CRBN)E3连接酶。也通过改变链接器部分来扩大基于INM的Protac的面板。抗病毒活性非常容易受到这种修饰,特别是对于将VHL劫持为E3连接酶的Protac,一种基于哌嗪的化合物(Protac 6)显示了受感染的人肺细胞中有效的抗SARS-COV-2活性。Interestingly, degradation assays in both uninfected and virus-infected cells with the most promising PROTACs emerged so far (PROTACs 5 and 6 ) demonstrated that INM-PROTACs do not degrade human PGES-2 protein, as initially hy pothesized, but induce the concentration-dependent degradation of SARS-CoV-2 main protease (M pro ) both in M pro -transfected and in SARS-COV-2感染的细胞。重要的是,由于目标降解,INM-Protacs在吲哚美辛中表现出相当大的抗病毒活性增强,在低微极/纳摩尔范围内EC 50值。最后,针对Protac 5和6测量了动力学溶解度以及代谢和化学稳定性。总的来说,在SARS-COV-2感染的细胞中证明活性的一类SARS-COV-2 M Pro降解者,将基于INM的Protac鉴定为有效的,广泛的抗副癌病毒策略的发展。
抽象的树枝状菌Asper是一种具有较高商业价值的竹类,是世界热带地区大规模农业林木种植园的首选竹子。使用组织培养的微磷化对于产生均匀的克隆至关重要的,这些克隆可容纳在工业农业污染项目中,用于竹类生物量,栖息地恢复或碳固存中。本文报告了使用市售种子建立D. Asper Invitro。使用三种不同的化学剂(次氯酸钠(20%),氯化汞(0.1%)和乙醇(70%),然后在Murashige和Skoog(MS)培养基上以6-苯甲酰胺(BAP)补充,浓度为1.0 -0 -0 -0 -0 -MG/l。在补充不同浓度的IBA吲哚-3-丁酸(IBA)和萘乙酸(NAA)的MS培养基上乘以繁殖,并最终在泥炭苔藓中生根并坚硬。我们的研究结果表明,灭菌方案消除了所有植物病原体,从而产生了轴突培养。补充5 mg/l BAP的全强度MS培养基在接种四个星期后产生的芽数量最高(每位外植体11.46)。在补充了3 mg/l BAP的MS培养基上获得了最高的乘法率(每次外植体3.95芽)。从启动到硬化所需的时间为70至90天,随后植物会准备进行现场试验。这项研究的结果将促进建立致力于生产D. Asper在本地生产的植物组织培养计划,从而消除了对进口的需求以及可能对当地农业林业行业有害的植物病原体的可能进入。关键字:dendrocalamus asper;竹子;微爆; 6苄基氨基嘌呤;吲哚-3-丁酸;萘乙酸; Murashige和Skoog Medium