摘要:随着民用和军事领域的通信技术的快速发展,电磁波引起的电磁辐射污染问题变得特别突出,并带来了巨大的伤害。迫切需要探索有效的电磁波吸收材料来解决电磁辐射污染的问题。因此,各种吸收材料已经迅速发展。中,具有出色磁性特性的铁(Fe)磁吸收颗粒材料,高Snoek的截止频率,饱和磁化和居里温度,表现出极好的电磁波损失能力,是吸收吸收材料的一种承诺。然而,铁磁颗粒的阻抗匹配,易于氧化,高密度和强烈的皮肤作用的缺点。通常,形态结构设计和多组分材料复合材料的两种策略用于改善基于Fe的磁吸收剂的微波吸收性能。因此,在微波吸收中已广泛研究了基于Fe的微波吸收材料。在这篇综述中,通过近年来对基于Fe的电磁吸收材料的报告摘要进行了审查,从详细讨论了基于Fe和Fe的复合吸收器的不同方面的详细讨论基于Fe的吸收材料的研究进度,并进行了基于Fe的吸收材料的研究进度,并进行了制备方法,吸收培养基和基于铁的吸收材料的吸收机制。同时,还阐述了基于Fe的吸收材料的未来开发方向,为有效的电磁波吸收材料的研究和开发提供了参考,具有较强的吸收性能,频率带宽,轻质重量和较薄的厚度。
相变的材料由于其急剧依赖于温度的特性而有希望,并且在光学开关和传感技术中具有很高的潜力。在此类材料中,二氧化钒(VO 2)是最实用的,因为其过渡温度接近室温。基于VO 2的基于电阻率的基于电阻率的较大温度系数来检测红外辐射。但是,为了达到较大的灵敏度,活跃的辐射吸收区域必须足够大,以允许VO 2吸收的入射辐射的足够温度积累,从而需要大的像素尺寸并降低降压测定量测量的空间分辨率。此外,在大多数应用程序中,VO 2材料的吸收未针对特定频段进行优化。另一方面,可以对等离激元纳米构型进行调整和设计,以选择性,有效地吸收入射辐射的特定带,以用于局部加热和热成像。在这项工作中,我们建议将血浆纳米结构与vo 2纳米线结合在一起,以扩大由于热变化而导致阻抗变化的斜率,以达到更高的敏感性。我们通过提出的检测器对中红外电磁辐射吸收的数值分析显示,该检测器显示等离子吸收剂接近完美的吸收。此外,由于底物在热分布中起着很大的作用,预计热堆积和纳米线抗性变化是不同的底物。我们还讨论了拟议设备上VO 2纳米线的制造。我们通过我们的新型降低测量器显示出高灵敏度和超低噪声等效温度差异(NEDT)。
太阳能收集器和工作流体之间的对流和导电热传递使光热性能有限,并导致从传统吸收剂表面到周围环境的热量损失较高。直接吸收太阳能收集器(DASC)是改进光热性能的有利替代方法。在这项研究中,使用TRNSYS进行了基于纳米结构太阳能收集器的性能的模拟。在这项研究中,通过使用纳米流体和三种不同的纳米结构材料CUO,GO和ZnO,可以改善来自直接太阳能收集器的结缔组织和导电热传递。分析确定了通过直接太阳能收集器的工作流体的出口温度。TRNSYS模型由拉合尔市的直接太阳能收集器和天气模型组成,整整一年进行了1,440小时。使用UV-VIS分光光度计研究了水中这些纳米结构材料的稳定性。确定了直接太阳能收集器的各种性能参数,例如出口收集器温度和传热速率的变化。通过实验结果验证了数值模型。对于基于GO的纳米流体,观察到63°C的最高出口温度。模拟结果表明,全年,纳米流体改善了直接太阳能收集器的性能。与水相比,基于CUO,ZnO的纳米结构的纳米液体观察到23.52、21.11和15.09%的传热率的显着提高,与水相比分别进行。这些纳米结构材料在太阳能驱动的应用中是有益的,例如太阳能脱盐,太阳能水和空间加热。
三元粉红元已经成为超薄光伏的潜在候选物,而NABIS 2纳米晶体(NC)由于空气中长达数月的相位稳定性,高吸收系数> 10 5 cm-1,以及PSEUDO-DIEMEDO-DICEUDO-DICEUDO-DERCOUDO-DECLACEUDO-DECHUDO-DECLECTAL-1.4 EV。然而,先前对NABIS 2 NC的研究使用了在合成过程中分离单个NC的长链有机配体,这严重限制了宏观电荷 - 载流子运输。在这项工作中,这些长链配体用于简短的基于碘化物的配体,从而可以理解NABIS 2的宏观电荷载体运输特性,并在更深入的情况下评估其光伏电位。发现配体交换会导致NC内(微观)和NC(宏观)迁移率同时改善,而电荷载体定位仍在进行,这对可实现的运输长度产生了基本限制。尽管有这种限制,但高吸收系数使超薄(55 nm厚)的太阳能吸收剂可用于光伏设备,这些设备具有峰值外部量子效果> 50%。此外,与温度依赖性的瞬态电流测量结果发现了一个用于离子迁移的88 MeV的小活化能屏障,这说明了Nabis 2光伏设备的强烈滞后行为。这项工作不仅揭示了NABIS 2 NC在几个长度上的电荷运输特性如何受到配体工程的影响,而且还如何揭示该材料中易于离子的传输,从而限制了光伏中NABIS 2的潜力。另一方面,发现表明,有机会在需要离子传导的备忘录,电解质和其他应用中使用这种材料。
从烟气中分离 SO2 的传统方法是用湿式石灰石洗涤或用胺基吸收剂处理。[6] 重油或煤燃烧产生的烟气通常含有 500-3000 ppm 的 SO2 ,使用这些成熟的方法可将其降低高达 95%。[7] 重要的是,<500 ppm 的痕量 SO2 仍残留在烟气中并排放到大气中。而且,这些残留的 SO2 会使 CO2 吸附剂失活或毒害选择性 NOx 氧化催化剂。[8–10] 因此,进一步降低烟气中的 SO2 含量具有重要的经济和环境意义。多孔材料对 SO2 的可逆物理吸附被视为进一步降低烟气中 SO2 的一种方法。目前,用金属有机骨架(MOF)进行 SO2 吸附引起了人们的浓厚兴趣。 [11–27] 金属有机骨架通常是微孔金属配体配位网络,具有均匀的孔隙率、低密度,并可通过有机连接体(即金属桥接配体)进行高度可调。[28] MOF 在作为吸附剂(特别是 N 2 、 H 2 、 CO 2 、 CH 4 等)用于未来的气体储存和气体分离 [29–31] 或有毒和污染气体的捕获方面的作用受到广泛研究。[32–38] 然而,MOF 通常不具有很高的化学和热液稳定性。[39] MOF 的优势显然在于它们的可设计性,尤其是它们可控的孔径和可修改的孔表面是无与伦比的,然而,其他多孔材料也可能具有良好的 SO 2 吸收特性。典型烟气混合物的主要成分是 N 2 或 CO 2 以及少量 SO 2 (500–3000 ppm)。[7] 对 SO 2 的亲和力优于 CO 2 和 N 2 ,这决定了高选择性,这对于实现高分离效率至关重要。有前途的材料还应具有较高的 SO 2 单气
第 1 部分 诺克斯堡环境政策备忘录 7 前言 8 监管参考 9 第 2 部分 - 紧急情况信息 紧急电话号码 11 环境联络点 (POC) 12 第 3 部分 - 责任 - 单位、EO 和其他 租户、单位和承包商 14 环境官员 (EO) 培训 15 任命 EO 的样本命令 16 环境官员 (EO) 职责 17 第 4 部分 - 操作控制 “操作指南” 吸收剂(用于 POL) 20 气雾罐 21 石棉(建筑翻修/维护/拆除) 22 镇流器、电容器和其他含有 PCB 的设备 23 电池(铅酸) 24 电池(非铅酸) 25 刹车片/蹄(处置含 PCB 的镇流器、电容器和其他设备 26 散装储存容器 (BSC) 27 压缩气体钢瓶 (CGC) 28 建筑/拆除垃圾 (C/DD) 填埋场 29 挖掘许可证/公用设施定位 (兵营和训练区) 30 挖掘许可证样品申请 31 滴水垫/滴水盘 32 荧光灯和含汞灯 33 氟利昂和臭氧消耗物质 (ODS) 34 氟利昂制冷剂 (ODS) 回收政策 35 气瓶 (一次性) 36 灰水 37 危险材料 (采购/储存程序) 38 家用和商用电器 39 含铅油漆 (表面处理-翻新) 40 霉菌 41 NBC/CBRN 设备 (探测器/消毒套件) 42 油水分离器 (OWS) 43 油漆及油漆相关材料(油性油漆和着色剂)及乳胶(水性油漆和着色剂) 44 零件清洗机/溶剂罐 45
毛细管现象在自然界中无处不在,直接参与生命系统的功能。[1] 天然多孔介质的特点是随机(如土壤、海绵)或有序(如木材、肺)结构。人造毛细管介质种类繁多,广泛应用于大多数行业,如过滤器、纺织品(编织和非编织)、吸收剂、陶瓷或组织支架。[2] 人们一直致力于改造多孔材料的毛细管特性,以实现改进的热学、[3] 机械学、[4] 电学、[5] 光学[6] 和生物医学 [7] 性能。除了本质上多孔的材料(如金属有机骨架 [8] )之外,最近的研究还集中于可以精细控制材料添加(如 3D 打印 [1,9] )或从块体材料中去除(如激光蚀刻 [6,10] )的制造工艺,以设计精确的孔隙结构。具有多功能工程设计的多孔材料特别适用于被动式能量转换装置。这些装置通常不需要高质量的能量输入,而且由于没有移动的机械部件,维护成本低,而且具有成本效益。此外,它们最适合离网安装,并且总体上可以促进与水能关系相关的行业的可持续转型。[11] 这些装置可以利用多孔毛细管介质来克服小水头,并在无需主动机械或电气部件的情况下为整个系统提供工作流体。已提出将其应用于蒸汽发电、[12] 海水淡化、[13,14] 盐沉淀、[15] 水卫生、[16] 太阳能热能收集 [6] 和冷却 [17] 等。显然,优化此类被动装置中多孔材料的毛细管特性对于提高其整体性能至关重要:毛细管特性差可能导致连续蒸发过程中干燥,并会严重限制可实现的最大装置尺寸。[18] 因此,毛细管特性不佳会严重阻碍整个系统的生产率和可扩展性。被动能量转换装置通常使用非结构化毛细管材料(如纸或商用纺织品)作为移动工作流体的被动组件。[19] 然而,考虑到
纳米光电综合电路已经发挥了巨大的技术增长,目前构成了许多技术领域的驱动力,包括现代光学通信系统。基于商业CMOS兼容和技术成熟的硅在隔离器(SOI)平台,这是一个高度有效的,大型的,大型的,超级压缩和低损耗的光学组合,包括波格指南,谐振器,谐振器和谐振器,包括波动,谐振器和电动机。[1,2]最近,当代富含硅的二氮在绝缘子(SRNOI)平台(与SOI互补的)平台(SRNOI)平台也引起了极大的关注。[3 - 5] SRNOI平台结合了SI的高折射率和宽阔的罪带,可实现微型化和强烈的光线结合,而无需单次吸收损失和两光子吸收诱导的损失,以及SI I近Indimrared(NIR)中SI的无效效果。当前,缺乏可靠且有效的SOI兼容片上的集成光源[6]构成了实现高融合密度密度硅基纳米光子电路的瓶颈。此外,通过利用可腔内饱和吸收剂来控制激光动力学,以将连续波(CW)纳米光激光转化为脉冲源而无需进行外部调节的脉冲源,而最近仅在光电晶体洞中进行一次尝试,但仅尝试进行一次尝试。[8]但是,带来了[7] Conventional passive pulsed laser sour- ces exploiting Q-switched and mode-locked mechanisms are rather bulky and typically based on either free-space Fabry- Pérot or fi ber-loop cavities, with the gain provided by solid-state and rare-earth-doped fi ber lasers, respectively, while the satura- ble absorption (SA) effect is delivered by semiconductor satura- BLE吸收镜(SESAMS)。[8-10]尽管由于纳米腔腔的短往返,纳米级模式锁定机理的剥削似乎是概率的,但Q解换原理似乎很有希望,因为它本质上受到紧凑型腔结构的固有青睐。
毛细血管本质上是无处不在的,直接参与了生活系统的功能。[1]天然多孔培养基的特征是随机(例如,土壤,海绵)或有序(例如木材,肺)结构。他们的人造顾问在大多数行业,例如过滤器,瓷砖(编织和非织造),吸收剂,陶瓷或组织脚手架中广泛采用。[2]工程设计了多孔材料的毛细管特性,以提高热量,[3]机械,[4]电气,[5]光学,[6]和生物医学[7]性能。除了本质上多孔的材料(例如,金属有机框架[8])外,该研究还集中在制造过程上,这些工艺可以很好地构成物质添加(例如3D打印[1,9])或去除(例如,从Bulking [6,10])从Bulk buts from Bulk Interal in Bulk Interipition from bualte interctuction。具有工程多功能性的多孔材料对被动能源转换设备特别希望。这些设备通常不需要高质量的能源输入,并且由于没有移动机械零件,需要低维护,并且具有成本效益。此外,它们对于离网装置是最佳的,通常,它们促进了与水能Nexus相关的行业的可持续过渡。[11]这些设备可以利用多孔毛细管介质克服小液压头并在整个系统中提供工作流体,而无需进行主动的机械或电气组合。[19]这些材料提供了有限的优化程度已经提出了用于蒸汽产生的应用,[12]淡化,[13,14]盐沉淀,[15]水卫生,[16]太阳能热能收集,[6]和冷却,[17]等。清楚地,优化这种被动设备中多孔材料的毛细血管特性对于提高其整体性能至关重要:较差的毛细管可能会导致连续蒸发过程中的干燥,并且会显着限制最大可实现的设备尺寸。[18]因此,亚最佳毛细血管特性将显着阻碍系统总体的生产率和尺度能力。被动能量转换设备通常使用非构成毛细管材料(例如纸张或商业纺织品)作为移动工作流体的被动组件。
在各种应用中都使用了稳定的具有较大脉冲能量和峰值功率的稳定的固态脉冲激光源,从基础研究到工业材料加工,医学和电信[1-3]。使用饱和吸收器(SA)生成脉冲激光器已成为当今最受欢迎的方法。近年来,由于成功地应用石墨烯而刺激了许多具有分层结构的二维(2D)材料,因为它们具有超快速恢复时间,可宽带饱和吸收和简单制造过程的优势,因此已重新发现了有前途且有趣的SA材料[4-7]。div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> tinse友好型材料,由于其独特的特性,低毒性,低毒性和低成本和低成本和低成本[8,9],对通信,微电子,激光和非线性光学领域引起了广泛关注。由于具有可调的带隙特性,SNSE 2具有明显的宽带饱和吸收特性。几层和大散装SNSE2的间接带隙范围从1.07(〜1159 nm)到1.69 eV(〜734 nm),分别对应于1.84至2.04 eV的直接频段范围[10]。几层SNSE 2的间接带隙表示在1μm下可饱和吸收剂的能力。 Cheng等人在2017年首次报道了多层SNSE 2在1μm处的非线性光学特性,这是一种基于SNSE 2 -SA的被动Q开关波导固态激光器,其最小脉冲宽度为129 ns,脉冲宽度为129 ns,脉冲能量为6.5 NJ [10]。在2018年,Zhang等人。在2018年,Zhang等人。报告了基于SNSE 2 -SA [11]的高功率被动Q开关的YB掺杂纤维激光器。到目前为止,SNSE 2的非线性光学响应已通过不同波段的Q开关或模式的激光器进行了广泛研究[12-15]。但是,对固态激光器中SNSE 2的脉冲调制特征的研究还不够。