保时捷选配代码 – 所有车型 第 1 页 001 Carrera Cup 版(964、993 和 996) 002 RS Touring 版 002 基本型 Carrera RS 003 Group N GT1 Carrera RS 004 Carrera GT/996 GT3RS 005 911 赛车/996 GT3R 007 日本版 993 Carrera RS 008 Boxster 3.2 升发动机 009 Boxster 2.7 升发动机 009 3 速 Sportomatic 变速箱 014 996 运动套件 018 带高架轮毂的运动型方向盘 020 带 2 个刻度 KPH/MPH 的车速表 022 黑色仪表盘和仪表组(997) 023 银色仪表盘和仪表组(997) 024 希腊版 025 黑色仪表盘和秒表(997) 026 活性炭罐 026 银色仪表盘和秒表 (997) 027 加利福尼亚版 029 标准底盘(987 和 997) 030 运动型悬挂组 031 运动型减震器 032 旅行悬挂 033 运动型减震器 033 低底盘车辆(993 和 996) 034 意大利版 036 带冲击吸收器的保险杠 042 Martini Racing 条纹 042 邓禄普 RS 3.8 轮胎 058 带冲击吸收器的保险杠 061 英国版 062 瑞典版 063 卢森堡版 064 荷兰版
o Sebewaing 南堤坝 o Saginaw 河维护性疏浚 o Southfield ARC AMSA 大楼翻新 o Grand Haven 北码头波浪衰减器 o Duluth 运河海岸线保护 o Duluth 船厂维修,第二阶段 o Soo 设施服务通道修复 o Soo MSB 停车场和新仓储大楼 o Soo 备用发电机更换 o Grand Haven 和 Holland 外部疏浚 o Grand Haven 波浪吸收器安装 o Toumey 苗圃设施升级 o St. Joseph 北护岸和码头设计 o 219 Michigan CSO-Martin 蓄水池设计
标题:迈向多光谱红外成像 演讲者姓名:Elahe Zakizade 博士 公司名称/研究所:弗劳恩霍夫微电子电路与系统研究所 项目名称:Eurostars SPEKTIR 资助小组:Eurostars 摘要是否可以在网站上发表: ☒ 是 ☐ 否 提供最多 500 字的摘要。使用 ARIAL 字体,11 号。如果使用图表,文本和图表必须保持在这一页内。 近年来,热成像相机市场不断增长。主要驱动因素是基于微测辐射热计技术的非制冷红外焦平面阵列 (IRFPA),因为它们是低成本成像仪,不需要额外的复杂和昂贵的冷却系统。大多数当前的热成像应用都基于长波红外 (LWIR) 辐射的检测,波长覆盖从 8 μm 到 14 μm,对人体温度敏感,不仅可用于军事应用,而且在智能手机、监控摄像头或自动驾驶汽车等大众市场应用中也越来越受欢迎。此外,非制冷热像仪在波长范围为 3 μm 至 5 μm 的中波红外 (MWIR) 中也能敏感。MWIR 传感器可用于监测温度高达几百摄氏度的“热源”、检测危险或易燃气体或环境监测等应用。红外区域多光谱成像的实现引起了广泛关注,因为它能够可视化和组合来自 MWIR 和 LWIR 区域的信息。微测辐射热计作为非制冷 IRFPA 的传感元件,采用热原理运行。它们是独立的隔热传感器膜。它们吸收红外辐射并将其转化为温度上升。微测辐射热计膜的温度变化会导致电阻随入射功率的变化而变化。CMOS 读出电路将微测辐射热计随温度变化的电阻变化转换为数字值并生成图像。实现多光谱吸收的一种有前途的方法是使用等离子体超材料吸收器 (PMA)。在过去的几十年中,等离子体领域因其各种潜在应用而备受关注,尤其是在可见光谱范围内。等离子体结构的研究也已扩展到红外区域,以实现高吸收率并调整中波红外和长波红外光谱区域的吸收波长。实现适用于弗劳恩霍夫 IMS 微测辐射热计技术的合适吸收器的有希望的候选材料是金属-绝缘体-金属 (MIM) 结构,该结构由上部周期性金属结构、中间介电层和下部金属反射层组成,以在所需的吸收波长下产生强局部表面等离子体共振。材料选择,弗劳恩霍夫 IMS 研究了沉积技术和图案化工艺,以实现高灵敏度的多光谱热成像。弗劳恩霍夫 IMS 将报告其在实现多光谱红外成像方面取得的进展。它将展示用于多光谱红外成像的带有等离子体超材料吸收器的微测辐射热计的最新模拟结果和实验表征。
厚度的抽象超薄太阳能电池至少比传统太阳能电池低10倍,可以有效地将太阳能转化为电能,同时可以节省材料,较短的沉积时间和改善缺陷吸收材料中的载体收集。有效的光吸收以及高功率转化效率可以使用可增强光学路径的光捕获结构保留在超薄吸收器中。尽管如此,一些技术挑战阻止了实用设备的实现。在这里,我们回顾了C-SI,GAAS和CU(in,GA)(S,SE)的最先进的2个超薄太阳能电池,并将其光学性能与理论轻型捕获模型进行比较。然后,我们解决了超薄吸收器层的制造和轻捕捕集结构的纳米级图案中的挑战,并讨论了确保收集有效收费的策略。最后,我们提供了将光子和电限制结合到超薄太阳能电池的实用体系结构中,并确定超薄光伏技术的未来研究方向以及潜在应用。引言光伏在可再生能源生产中的份额预计将从2017年的6.6%增长到2030年的18.9%。达到此目标不仅需要太阳能电池效率的提高,而且还需要降低其成本。基于单晶半导体的单连接太阳能电池的效率现在接近理论冲击式 - Quierser(SQ)极限。效率约为23%相对于33.5%2的平方限制限制,GAAS太阳能电池的效率为29.1%,厚度为1-2 µm,厚度为3,4。晶体硅(C-SI)的间接带隙负责促进蛋白重组和弱光吸收,从而导致理论效率限制较低29.4%5,而165 µm-thick thick silicon Solar Solar Solar Solar Solar Solar细胞的记录为26.7%。由于材料质量较低,多晶太阳能电池的效率远非理论SQ极限。
•可以评估供应链所有操作组件的相互作用。•意识到计划和设计供应链的措施。•可以评估供应链设计的战略方法的可能影响。•熟悉采购,生产和分销过程的计划和设计原则。•熟悉用于管理公司网络的当前方法和工具。•意识到供应链管理和供应链软件领域之间的联系。•可以正确使用选定的物流工具。•可以识别和分析包装设计的关键组成部分,例如形状,颜色,版式和材料,以了解它们在消费者感知和产品保护中的作用。•描述和评估包括传感器,指标,吸收器和发行器等组件的先进主动和智能包装解决方案,以确定其在提高产品安全性,延长保质期并增强消费者参与度的能力•意识到与当前包装系统相关的环境挑战。
可以与国防工业中其他国家使用的设备相媲美的技术的发展,更重要的是,可以禁用其设备变得越来越重要。雷达吸收材料(RAM)由于吸收了雷达发送的电磁波的一部分,因此难以检测雷达上的材料。考虑到雷达是国防工业中最重要的技术之一,因此非雷达材料的生产对于世界上所有国家至关重要。用雷达吸收器材料覆盖枪支平台可降低代表该平台在雷达上的可见性的雷达 - 横截面区域(RCA)值。本综述旨在提出电磁原理,并在1960年代数十年中开发出雷达吸收材料(RAM)。电磁频谱中8-12 GHz的频率范围为微波炉,并用于机场雷达应用中。在本文中描述了电磁理论的修订基础,并由多种吸收性材料和某些设计层化的类型和技术定义。
摘要。超材料是一种经过设计的材料,具有天然材料所不具备的特性,这为创造具有全新功能的材料提供了广泛的机会。膨胀材料是一种超材料,它的独特之处在于它们被设计成具有负泊松比,而天然材料具有正泊松比。膨胀材料已经显示出一些非常有前途的能量吸收特性,可广泛应用于汽车(碰撞吸收器、悬架部件)、医药(假肢)、服装(鞋底)等领域。此外,它们还表现出优于传统材料的其他特性,例如:剪切模量增加、声学性能更好、断裂韧性提高等。介绍了在 CATIA V5 软件中建模的方法以及使用 3D 打印技术(如 MSLA(掩模立体光刻设备)、选择性激光烧结 (SLS) 和熔融沉积成型 (FDM))的各种制造方法。
由亚波长大小的金属或介电纳米结构二维排列组成的光学超表面可用于操纵亚波长厚度层的光特性。1–4 光学超表面被认为是完美的 5 和选择性 5,6 吸收器和透镜。7 光学超表面的可能应用包括与 CMOS 图像传感器结合用作滤波器 8 或用作生物传感器的构建块。9,10 相比之下,很少有人尝试将超表面直接整合到光电器件中,并利用其波长选择性和偏振选择性等特性。金属超表面已与体光电探测器相结合,用于光电流增强和传感。11,12 介电超表面已被构造到体 Si 和 Ge 光电二极管的顶层,以增强宽带响应度。13
1格勒诺布尔阿尔卑斯大学,CEA,LITEN,DTS,LSA,INES,F-38000,法国2UniversitéClermontAuvergne-CNRS,ICCF,F-63000 Clermont-Ferrand,法国,法国,法国,作者:Romain Couderc couderc gerderc lomain coudercǀ emain.main.comain.coudcrc@ic.frc@ic。 +33479792361摘要数十年来,在操作太阳阵列中观察到了由紫外线暴露引起的光伏(PV)模块。不仅仅是一种美学上的不便,这种现象可以严重损害模块的性能,并通过封装的光保护损害其他降解机制。为了更好地理解当前材料中的这种反应,在紫外线照射下,具有紫外线或紫外线商业封装的HJT单子弹模块是在紫外线照射下老化的,并通过视觉检查,荧光成像和闪光测试对其进行检查。仅通过紫外线吸收器稳定的封装物进行了变色。一方面,紫外线吸收器光氧化是导致影响光传输到细胞的黄色发色团的形成。因此,它们导致光生电流的净减少,该电流在加速4200小时后达到4%。另一方面,他们的光漂白解释了模块边缘缺乏变色。根据当前封装配方的行为,必须提高紫外线吸收添加剂的稳定性,以确保设备在30年内的耐用性。限制全球变暖的最有害影响的简介,预计我们的社会的重大变化。太阳能光伏(PV)在过去十年中飙升,到2020年达到821 TWH。在发电方面,1.5°C的情况需要在全球能量混合物中急剧增加可再生能源部分[1]。到2030年需要8倍的容量才能达到零净排放到2050年,这是1.5°C的情况[2]。由于PV系统耐用性对其水平的能源成本(LCOE)[3]和生命周期评估(LCA)[4]的影响很高,因此必须对影响PV模块的不同降解模式进行彻底研究,以确保能量过渡。