顶部安装的俯仰点吸收器是最有前途的波浪能转换器之一,因为它可以轻松地连接到现有的海上结构上。然而,由于强烈的非线性流体动力学行为,很难准确预测其能量转换性能。本文使用光滑粒子流体动力学 (SPH) 来解决这种波结构相互作用问题。首先根据从楔形入水实验中获得的自由表面变形测量值来验证 SPH 方法。规则波与固定和自由俯仰设备相互作用的 SPH 模拟与测量数据高度吻合,为预测功率转换性能提供了信心。吸收功率和捕获宽度比随着波浪周期表现出单峰行为。在此分布中的峰值功率的波浪周期随着 PTO 阻尼而增加。根据观察到的设备尺度的缩放行为,最佳阻尼的较大尺寸设备能够有效吸收较长波长的入射波的能量。在有限深水中,较大器件相对于较小器件实现了更高的效率,其在2πh/λ=1.1时的峰值效率为选址提供了参考。
透平膨胀机是一种带有膨胀涡轮的旋转机器,可将气体中所含的能量转化为机械功,与蒸汽或燃气轮机非常相似。蒸汽或燃气轮机的目标是将机械功转化为有用的动力,通过驱动发电机或作为另一台旋转机器(如压缩机或大功率泵)的原动机。在需要对工艺气体进行制冷的应用中,透平膨胀机的特点是它为了自身目的而膨胀气流,并产生机械功作为副产品。这并不是说机械功的副作用没有用处。相反,大多数透平膨胀机可能驱动压缩机或发电机。在这种情况下,压缩机或发电机充当加载或制动装置——膨胀机能量的吸收器。这种机器的另一个常用术语是“压缩膨胀机”,尽管这在天然气加工行业中不太常见。本文主要关注的是压缩机加载的低温透平膨胀机,尽管所阐述的许多原理也适用于其他类型的膨胀机,例如膨胀发电机。
摘要。太阳能行业中使用的材料的总半球发射率是计算辐射热损失和材料效率的关键参数,尤其是在太阳能集热器吸收表面中。这是因为辐射热损失对太阳能发电厂发电的最终成本有重大的经济影响。我们位于西班牙巴斯克大学 (UPV/EHU) 的实验室 HAIRL [1] 是第一个在工作温度下发表太阳能吸收器表面 (SAS) 红外光谱发射率测量结果的实验室 [2]。该实验室允许在 0.83-25 μm 范围内测量 50 至 1000 ºC 之间的温度,并且还能够在 0 至 80 度之间的不同角度进行定向测量。因此,它适用于测量太阳能选择性涂层、研究高温稳定性和表征热能收集材料。在本次演示中,我们展示了我们实验室的规格、耐空气太阳能选择性涂层和热存储共晶合金的光谱发射率测量结果,并证明了在工作温度下进行测量以获得可靠数据的必要性。
Ultrafastber激光器广泛用于各种军事和平民应用中,1 - 3,例如光学通信4和精确加工。5,6产生超短脉冲的主要方法之一是被动模式锁定的技术,其中关键是将饱和吸收器(SA)引入激光腔。模式锁定的ber激光器可以使用合适的配对作为SAS实现,从而在性能和输出稳定性方面具有优势。6现有的饱和吸收材料包括半导体可饱和吸收镜7,8和由石墨烯,9,10钼二钼de(MOS 2)11,12和黑磷所代表的二维材料。13,14此外,多种材料已用于超快激光器中的模式锁定设备,包括SNSE 2,15 GEAS 2,16 RGO-CO 3 O 4(参考17)和WCN。18然而,对SAS使用的新材料的调查仍处于早期阶段。因此,有必要探索新型材料作为具有出色非线性光学特性的替代SAS,以实现模式锁定的超短脉冲激光器。
研究了高反射率相移掩模 (HR-PSM) 对 36nm 间距逻辑接触孔进行图案化的方法,并在成像性能 (ILS、LCDU、MEEF 等) 和曝光剂量方面与其他掩模吸收器进行了比较。为此,使用了晶圆数据校准的 CAR 和 MOR EUV 光刻胶模型。我们的模拟结果表明,HR-PSM 在较大的掩模 CD 下会产生暗场图像。但是,随着掩模 CD 的减小,图像的色调会发生反转,并且可以生成具有良好对比度的明场图像。基于这一观察,提出了一种 HR-PSM 加 MOR 图案化方法,用于最小间距等于 36nm 的全间距逻辑接触孔应用。我们表明,这种方法在全间距性能方面表现出多种增强,并且使我们能够使用 0.33NA EUV 扫描仪将逻辑接触孔的实际分辨率扩展到 40nm 间距以下。
1. 康普顿相机 康普顿相机是一种利用康普顿散射光子的能量与其散射角度相关的事实的设备。它们通常由一个具有非常好的位置分辨率的薄散射探测器和一个单独的分段吸收器组成,用于测量散射光子的能量。知道了康普顿散射光子的能量和散射源的精确位置,就可以从散射点向后向源投射一个锥体。源被限制在锥体表面的某个位置。由于入射光子方向的模糊性,它是一个锥体而不是一条线。乍一看,这听起来没什么用。然而,第二个散射光子将产生另一个锥体,两个锥体之间的交点揭示了源的位置。原则上,如果可以在散射探测器中测量反冲电子的方向,则可以消除背投影中光子方向的模糊性。
摘要:在研究和工程中,短激光脉冲是计量和通信的基础。由于紧凑的设置尺寸,通过被动模式锁定的脉冲产生特别理想,而无需主动调制需要专用的外部电路。但是,完善的模型并不能涵盖比型往返时间更快的增益媒体中的常规自动化。对于量子级联激光器(QCLS),这标志着其操作中的显着限制,因为它们表现出与间隔过渡相关的picsecond增益动力学。我们提出了一个模型,该模型对最近证明的第一个被动模式锁定的QCL的脉冲动力学提供了详细的见解。存在沿空腔的多层石墨烯所实现的不连贯的饱和吸收器的存在,通过表现出与增益介质相似的快速恢复时间,将激光驱动到脉冲状态。这种激光操作的预先未研究的状态揭示了增益培养基对不均匀分布的腔内强度的良好响应。我们表明,在存在强
摘要。下一代极端紫外线(EUV)系统具有0.55的数值,具有提供低于8 nm的半程分辨率的潜力。在较小的特征尺寸下,随机效应的重要性增加了扫描仪和掩模以提供高对比度图像的进一步需求。我们使用严格的面膜衍射和成像模拟来了解EUV掩模吸收器的影响,并确定用于高NA EUV成像的最合适的光学参数。对各种用例和材料选项的仿真表示两种主要解决方案类型:高灭绝材料,尤其是针对线条空间,以及可以提供相移遮罩溶液的低折射率材料。euv相掩码的行为与DUV的相移面膜大不相同。精心设计的低折射率材料和口罩可以为高对比度的边缘打开新的道路。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或重新分配或重新分配本工作,需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jmm.m.19.4.041001]
链式光学元件可实现具有更高效率和更宽的带宽的跨空间,并且在Imaging System,超分辨率光刻和宽带吸收器中备受期待。然而,周期性边界近似未考虑Aperiodic电磁串扰,这对链轴光学设备构成了挑战,以达到其实现限制。在这里,通过野外驱动的操作实现了对局部几何和传播阶段的完美控制,其中在实际边界条件下计算了场分布。与需要大量迭代的其他优化方法不同,所提出的设计方法需要少于十个迭代才能使效率接近最佳值。基于形状优化的链式结构库,可以在十秒钟内设计厘米尺度的设备,其性能提高了约15%。此外,该方法具有将链状的连续结构扩展到任意极化的能力,包括线性和椭圆极化,这很难通过传统的设计方法实现。它为开发链式光学元件提供了一种方法,并用作构建高性能光学设备的有效工具。
AFRL 空军研究实验室 AMM 制造模型 B 叶片 BTT 叶尖正时 CAD 计算机辅助设计 CARL 压缩机航空研究实验室 CFD 计算流体动力学 CMM 坐标测量机 CMS 部件模态综合 DOD 家用物体损坏 DOF 自由度 EO 发动机阶数 FEA 有限元分析 FEM 有限元模型 FMM 基本失谐模型 FOD 外来物体损坏 FRA 受迫响应分析 GMM 几何失谐模型 HCF 高周疲劳 HPC 高压压缩机 IBR 整体叶片转子 ICP 迭代最近点 LCF 低周疲劳 MMDA 改进模态域方法 MORPH 智能网格变形方法 PCA 主成分分析 PBS 参数化叶片研究 N 叶片数量 ND 节点直径 NSMS 非侵入应力测量系统 ROM 降阶模型 SDOF 单自由度 SWAT 正弦波分析技术 SNM 标称子集模式 TAF 调谐吸收器因子 TEFF 涡轮发动机疲劳设施 TWE 行波激励
