先进的高维测定技术,例如转录组学和表观基因组学32分析,在分子级生物学研究中提供了显着的深度和广度1。尽管有33项优势,这些技术通常只专注于特定的分子变化,34缺乏在细胞状态下观察变化的能力,涉及许多35个复杂和未知过程。为了在细胞系统水平上获取信息,已经开发出高36个吞吐量成像技术,以通过对染色的细胞成像2-4来产生细胞37表型的有用曲线。但是,这些基于图像的技术也有38个局限性,因为它们通常集中在具有已知关联或39个假设的生物过程上,从而限制了现有知识5中的发现5。此外,包括高维测定和基于图像的技术在内的传统40种方法通常受到其复杂性和高成本的约束。为了克服这些问题,已提出该技术称为细胞绘画(CP),已被提议作为解决方案。具体而言,CP技术43涉及染色八个细胞成分,具有六种非常便宜且易于染料的六个细胞成分,并在荧光显微镜6上五个通道中成像,这很易于操作,45
摘要该立场论文报告了知识图联盟工作组中关于可解释的数据和元数据原则的初步讨论,该论文于2024年3月创建。目前,我们正在采取初步步骤来捕获与解释,基础,依赖和信任有关的核心概念;该范围还扩展到潜在的双重概念,例如解释性,可验证性/可重复性,可靠性和可信度。这些初始步骤包括回顾核心概念,因为它们在文献中进行了讨论,并探讨了这些最中心概念的实际上有用的定义。结论之一是,元数据标准将需要适合记录三种基础:知识的基础,依赖基础和信任的基础。目前正在重新设计的中间和域级别的元数据标准正在进行重新设计,以便变得更加模块化,可以计算,可以使人类理解,并且可以调节,这将是我们继续进行工作的建议。在公共存储库上进行了这种Lite(OWL 2 EL)本体的发展,称为MSO-EM:用于建模,模拟,优化(MSO)和认知元数据(EM)的本体论。
基本模型,在大规模数据集中培训并使用创新学习方法适应了新数据,已彻底改变了各个领域。在材料科学中,微观结构分割在理解合金特性中起关键作用。但是,常规的监督建模算法通常需要大量注释和复杂的优化程序。分割的任何模型(SAM)介绍了一个新的视角。通过将SAM与域知识相结合,我们提出了一种用于合金图像分割的新型广义算法。该算法可以处理各种合金系统的图像批处理,而无需训练或注释。此外,它可以达到与监督模型相当的分割精度,并在各种合金图像中稳健地处理复杂的相位分布,无论数据量如何。
癫痫发作预测是治疗耐药性癫痫最常用的辅助策略之一。由于个体间差异,传统方法通常从同一患者身上收集训练和测试样本。然而,不同受试者之间的领域转移这一棘手问题仍未解决,导致临床转化率低。在本文中,提出了一种基于领域自适应 (DA) 的模型来解决这个问题。利用短时傅里叶变换 (STFT) 从原始脑电图数据中提取时频特征,并开发自动编码器将这些特征映射到高维空间。通过最小化嵌入空间中的域间距离,该模型学习了域不变信息,从而通过分布对齐提高了泛化能力。此外,为了增加其应用的可行性,本文模拟了临床采样情况下的数据分布,并在此条件下测试了模型,这是首次采用该评估策略的研究。在颅内和头皮EEG数据库上的实验结果表明,与以前的方法相比,该方法可以有效地最小化域间隙。